

A P2P Toolset for Distributed Requirements Elicitation

Filippo Lanubile
Dipartimento di Informatica, University of Bari

Via Orabona 4, 7026 Bari, Italy
lanubile@di.uniba.it

Abstract

Geographically distributed teams need nowadays
models and tools to support a load of activities that
usually take place through the direct interaction among
people. Our research effort is aimed to understand how
decentralized systems, based on a peer-to-peer
architecture, can be exploited to support the key activities
of global software development. As a first step, we have
focused on requirements elicitation because it is among
the most communication-rich processes of software
development. This paper presents a toolset for
distributed requirements elicitation, which is developed
on the basis of a peer-to-peer infrastructure platform,
called Groove.

1. Introduction

Globally distributed workgroups usually rely on
centralized systems, mostly built on top of web-based
development platforms. Two examples of centralized
infrastructure are SourceCast [10] and SourceForge [11],
two collaborative development platforms, that include
web-based access to defect and issue tracking, version
control and configuration management, mailing lists and
discussion forums.

Our research effort is aimed to understand how
decentralized systems, based on a peer-to-peer (P2P)
architecture, can be exploited to support collaboration
across time and space for global software development.

Collaborative P2P applications are increasingly
becoming popular to exchange instant messages, share
common information and applications, and jointly review
and edit documents. Collaborative P2P systems exhibit
the following advantages with respect to client-server
counterparts: autonomy, intermittency, and immediacy.
- Autonomy. In a P2P system every peer is an equal

participant while being a final authority over its local
resources. In this way everyone can share
information but at the same time can pose restrictions
on confidential data through access rights
management and data encryption. When enterprise

data are distributed on many places and on different
devices, P2P systems can provide an easier and
cheaper alternative to enforcing a convergence into a
centrally managed data repository.

- Intermittency. P2P systems are designed by giving
for grant that any peer can disappear at any time
because of network disconnections, either deliberate
or accidental. P2P collaborative systems use resource
replication and different synchronization
mechanisms, based on proxies for sending/receiving
messages in the network on behalf of the
disconnected sender/receiver. In this way, users can
work to shared content even when offline and
automatically propagate changes at the first
reconnection.

- Immediacy. P2P applications have shown themselves
able to support direct exchanges between peers, as in
the case of instant messaging. P2P collaboration
systems, based on near real-time communication
mechanisms and synchronous presence of the peers,
can provide immediate responses by participants to
enable effective person-to-person interaction.

Under these conditions, a P2P collaborative

infrastructure can complement or even replace client-
server platforms for the creation of ad-hoc or small
software teams. Due to P2P own features, it is possible to
quickly establish dynamic collaborative groups composed
of people from different organizations accessing shared
resources and interacting in a near real-time manner.

Among the many collaborative software engineering
activities, the focus in this paper is directed at the
software requirements activities, specifically requirements
elicitation. Eliciting requirements engage different
stakeholders, both from the customer and the developer
sides, who need to intensively communicate and
collaborate. As a key part of the requirements engineering
process, requirements elicitation has a great impact on the
later development activities; any omission and
incompleteness may lead to important mismatches
between customers needs and released product.

This paper introduces a distributed requirements
elicitation toolset which was developed on the basis of a
P2P infrastructure platform, called Groove. Section 2
presents the functionality of the collaborative toolset for
eliciting requirements from geographically dispersed
stakeholders. Section 3 describes the P2P platform which
we used as an application framework. Section 4
concludes the paper and suggests opportunities for future
joint research.

2. Requirements elicitation toolset

Requirements engineering is the most communication
rich process of software development, and then the
effectiveness of a requirements engineering process is
greatly constrained by the geographical distance between
stakeholders [3], as in the case of global software
development.

Some simple P2P tools have been already introduced
to support communication between distant stakeholders.
For instance, Microsoft’s NetMeeting has been used in
requirements negotiation [2] for its instant messaging
capabilities, to create a video and audio link between
people, and to share desktop applications. But the features
offered by generic tools provide a partial support to
specific requirements engineering activities, and often
there is no way to integrate them with commercially
available requirements engineering tools, such as Rational
RequisitePro.

For this reason, there is a need to develop a tool
infrastructure to support globally distributed workgroups
when developing requirements. Given the characteristics
of autonomy, intermittency and immediacy, we believe
that a P2P-based toolset is suited for the cooperation-
intensive needs of requirements engineering activities.

As a first step, we focused on requirements elicitation
which is regarded as the first activity in the requirements
engineering process [4]. Eliciting requirements is an
information gathering activity with the goal to identify
system stakeholders, their needs and expectations, system
objectives and boundaries. Elicitation techniques include
questionnaires and surveys, interviews and workshops,
documentation analysis and participant observation.

We developed a P2P toolset to be used for eliciting
requirements in a distributed context. In the following we
briefly describe each of the five tools comprising the
integrated toolset.

2.1. Stakeholders tool

The first step in requirements elicitation is often the
identification of who brings an interest in the software
project, both on the customer and the supplier sides, and
then will have an influence on requirements definition.

The Stakeholders tool acts as an archive of
information regarding the stakeholders involved in a
project. The tool can be thought as a shared contacts list
augmented with the annotation of the role (even multiple
roles) in the software project. Given the great variability
for role definition, the tool was developed with a set of
default roles from the Volere requirements specification
template [9], although it can be customized according to
different needs. The tool accounts for changes of roles
during the project lifetime, and for multiple roles of a
single stakeholder. Provided that a stakeholder has been
included, he or she can communicate with the other ones
by either sending asynchronous messages or by inviting
to join a chat.

2.2. Interview tool

Interviews are frequently used in requirements
elicitation to gather detailed information from
stakeholders. It also allows the requirements engineer to
hear different viewpoints that might need to be
reconciled.

In this tool an interview is set up through a wizard.
There are two types of available interviews: structured or
unstructured; in the former case the requirements
engineer can decide whether to prepare the interview
from scratch or not. If not, the tool supplies a set of
interview templates for the elicitation of high-level
system goals and architecturally significant requirements
[5]. Using these templates, it is also possible to trace
questions with respect to a requirements taxonomy.

Another feature of this tool is the availability of
multiple views of the interview according to the
interviewee’s role. In this way the same templates can be
customized for different stakeholders.

2.3. Requirements tool

The Requirements tool is used as a shared repository
of elicited requirements. The tool exploits the P2P feature
of data sharing: data are replicated (and encrypted) on
everyone’s computer and made accessible even offline.

A requirement is described by the following attributes:
ID, version, name, rationale, description, priority,
difficulty, stability, and status. An additional attribute,
requirement type, was added accordingly to the
requirements taxonomy used in the interview templates.
In this way it is possible to trace stored requirements with
related questions from the Interview tool. Users can also
define new requirements categories.

2.4. Workshop tool

The Workshop tool replaces the usual face-to-face
workshop in which a group of experts and stakeholders

works together with the goal of information discovery
and creation. Live discussions can be conducted either
through a chat or an audio link.

A workshop requires an agenda to let participants
follow a discussion flow, and two specific roles:
facilitator and scribe. The facilitator leads the process by
monitoring the discussion and managing group’s
dynamics. The scribe documents the group’s work by
taking notes as the discussion proceeds.

The tool helps to prepare the workshop through a
wizard which lets to define the target, the discussion
topics (they can be derived from interview logs), the
participants (and their role) and the meeting schedule.

2.5. Vote tool

The Vote tool can be used in the context of a
workshop, if controversies arise during discussion, or as a
standalone tool as well.

Voting includes a preparation phase in which it is
possible to add open or closed-answer questions to a
shared list. Voting can be set up as a secret or evident
ballot, depending whether or not participants’ choices
have to be kept anonymous.

3. Decentralized platform

We have implemented the requirements elicitation
toolset on the basis of Groove, an extensible decentralized
platform intended for communication, content sharing,
and collaboration [6].

Collaboration activities with Groove take place in a
shared application space, which is accessed from a rich
application client, called transceiver. A shared space,
including tools and persistent data, is duplicated on every
space member’s computer. Data within a shared space are
encrypted, both on disk and over the network, to assure
confidentiality and integrity. Both data and commands are
transformed, stored and transmitted as XML documents.

Every modification made to a shared space is
propagated to the other peers. If users do not stay
connected at the same time, the shared space gets
synchronized when a peer goes online. In this way the
state of the shared space remains the same for all peers.

As other P2P systems, such as Napster, the actual
interaction model of Groove is hybrid because peers can
establish direct connections using a Groove's native P2P
protocol called SSTP (Simple Symmetrical Transmission
Protocol), while the following services are supplied
through central servers:
- Presence awareness: when a peer running Groove

goes online, it registers with a presence server. In this
way other peers can scan the presence server if
interested in collaborating with other ones.

- Relay: when a peer is offline, communications
destined to it are sent to a relay server which will
deliver data to the peer when it reconnects. Relay
servers are also used when peers reside behind a
firewall that only allows outbound connections.
Since firewalls are usually configured to allow
employees to access the web, Groove leverages this
existing configuration to send and receive messages
through HTTP tunneling.

- Fanout: when the same information must be sent to
many users at the same time, data are transmitted
once to a server which retransmits them to other
peers.

With Groove, shared space members can use

predefined tools supplied by Groove Networks or by third
parties. Predefined tools include instant messaging, chat,
threaded discussions, audio-conferencing, shared files,
shared contacts, group calendaring, group editing, group
drawing and co-browsing. Developers can also build their
own applications in the form of single tools or integrated
toolsets.

To build the distributed requirements elicitation toolset
we used Groove as an application framework, by reusing
Groove’s critical services (storage, transport, encryption,
synchronization, messaging, presence awareness) and
default tools (e.g., Contact Manager, Outliner, Chat) with
the addition of scripts and XML code, accordingly to the
Groove Development Kit (at the time of development we
used GDK 1.3).

4. Conclusions

P2P is not a new technology but it is now emerging as
an alternative or complement to client-server models for
designing collaborative development systems. In order to
investigate issues that can be encountered when providing
P2P tool support for global software development, we
developed an integrated toolset for distributed
requirements elicitation.

In the field of collaborative software development
environments the P2P technology has begun to being
introduced. At University of Calgary, a project has
recently started [1] to port an existing process-support
environment (called MILOS) from a client-server model
to a P2P model, thus relaxing centralized control. The
migration project intends to use JXTA [7] as a P2P
framework., JXTA is a set of protocols for P2P
applications without restrictions to particular operating
systems or network services. Although the JXTA
specification is open to any programming language, the
most widely used implementation is in Java.

As for Groove, JXTA uses XML to exchange data
between peers. However, JXTA and Groove are not fully
comparable: the former is a low-level, general-purpose

platform and, hence, provides only services and no built-
in tools, while the latter is a very full-featured
collaborative application, which can also be used as a
development platform. By the way, the author is taking
part to the development of a P2P remote-conferencing
tool, based on the JXTA framework. This is an open
source project, hosted by jxta.org [8] and owned by Fabio
Calefato at University of Bari.

We wish that this paper will rise a discussion on
developing and using tools to support collaborative
activities for global software development. We also hope
that the workshop will give us the opportunity to start
collaborations for experimenting with the requirements
elicitation toolset.

5. References

[1] S. Bowen, and F. Maurer, “Using peer-to-peer
technology to support global software development –
some initial thoughts”, Proc. of the ICSE Int. Workshop
on Global Software Development, Orlando, FL, USA,
May 2002.
[2] D. E. Damian, A. Eberlein, M. L. G. Shaw, and B.
R. Gaines, “Using different communication media in

requirements negotiation”, IEEE Software, 17(3),
May/June 2000, pp.28-36.
[3] D. E. Damian, “The study of requirements
engineering in global software development: as
challenging as important”, Proc. of the ICSE Int.
Workshop on Global Software Development, Orlando,
FL, USA, May 2002.
[4] A.M. Davis, Software requirements: analysis and
specification, Prentice-Hall Press, Upper Saddle River,
NJ, 1990.
[5] P. Eeles, “Capturing Architectural Requirements”,
The Rational Edge, Nov. 2001,
www.therationaledge.com/content/nov_01/t_architectural
Requirements_pe.html
[6] Groove Networks, http://www.groove.net
[7] jxta.org, Project JXTA, http://www.jxta.org
[8] jxta.org, Project P2PConference,
http://p2pconference.jxta.org
[9] S. Robertson, and J. Robertson, Mastering the
Requirements Process, Addison-Wesley, Boston, MA,
1999.
[10] CollabNet, http://www.collab.net
[11] SourceForge.net, http://sourceforge.net

