
GNOME, a case of open source global software development

Daniel M. German
Department of Computer Science

University of Victoria
dmgerman@uvic.ca

Abstract

The GNOME Project is an open source project which
main goal is to create a GUI desktop for Unix systems, and
encompases close to two million lines of code. It is com-
posed by a group of more than 500 different contributors,
distributed across the world Some companies employ sev-
eral of these contributors with the hope of accelerating the
development of the project, but many other contributors are
volunteers. The project is divided into several dozen mod-
ules, ranging from libraries (such as GUI, CORBA, XML,
etc) to core applications (such as email client, graphical
editor, word processor, spreadsheet, etc). This paper de-
scribes the organization and management of the project and
describes the infrastructure needed by a contributor, how
contributors work as independently together, but still with a
common goal. It also describes how requirement gathering
takes place, and its unique administration structure, rooted
in the GNOME Foundation, a body created solely to oversee
the current and future development of the project.

This is where the abstract go

1. Introduction

Bruce Perens describes open source as software that pro-
vides the following minimal rights to their users: 1) the
right to make copies of the program, and distribute those
copies; 2) the right to have access to the software’s source
code; and 3) the right to make improvements to the program
[12]. Some of the classical examples of open source soft-
ware are the Linux operating system, the Apache Jakarta
project, or the GNU toolkit of software development tools
(gcc, emacs, make). The GNU Network Object Model En-
vironment (GNOME) Project (www.gnome.org) is an at-
tempt to create a free (as defined by the General Public Li-
cense, and therefore open source) desktop environment for
Unix systems. It is composed of three main components:
an easy-to-use GUI environment, a collection of tools, li-
braries, and components to develop this environment, and

an “office suite” [6]. The GNOME Project was founded by
Miguel de Icaza in 1996 as a loosely coupled group of de-
velopers, scattered all over the world. The project currently
involves around five hundred developers. The first version
(0.10) was posted in 1997. Version 1.0 was released in
March 1999, a point in which it was integrated into Red Hat
Linux as its default desktop. Version 2.0 is the latest stable
version, released in 2002, and development of Version 2.2
is on its way. GNOME is composed of a large collection of
programs and libraries, comprising almost two million lines
of code [2, 3].

2. Infrastructure

One of the main requirements for distributed develop-
ment is agreement on a common toolkit for software devel-
opment, as each of the members of the team is expected to
have access to these tools. In a private development, this
is not an issue, as it is expected that the organization will
provide the necessary software. Given the philosophy be-
hind OSS and because volunteers are an important driving
force in OSS, the toolkit of choice is usually OSS itself (one
notable exception to this rule is the use of bitkeeper a com-
mercial product for configuration management used by the
Linux project, free to be used by Linux developers, with
certain restrictions).

GNOME uses, like many OSS projects, the GNU toolkit
(gcc, make, autoconf, automake, emacs, vi, etc), CVS for
software configuration management, Bugzilla for bug man-
agement, GNU Mailman for its mailing lists, and of course,
because its goal is to provide a desktop for Linux, it uses
Unix as its development platform. Potential developers, by
just installing a recent version of Linux, have an environ-
ment that allows them to start contributing to the project.
The cost of entry is therefore minimized.

It is important to note that contributions to an OSS
project are not only restricted to working code (patches, as
they are commonly called); they can include documenta-
tion, bug reports, artwork, translations to other human lan-
guages, and many others. In this paper, we will use the term

1

developer to refer to any type of contributor to the project.

3. Project Management

In order to handle a project of this magnitude, the code
base is divided into modules. There are four main groups
of modules: a) required libraries (19 modules); b) core ap-
plications (4 modules); c) applications (16 modules), and
d) other (several dozen modules and growing, these mod-
ules represent individual applications that are not consid-
ered part of the core of GNOME). Each module has one
or more maintainers, who oversee the development of their
corresponding module and coordinate and integrate the con-
tributions of other developers to their module [4]. In a way,
a module represents an independent product that can have
its own maintainer, sets of requirements, development time-
line. These modules are interrelated between themselves,
but there relationships are kept to the minimum, so each
module can evolve as independently as possible from the
rest.

In an analysis of SourceForge projects, Krishnamurthy
found that most OSS projects are composed of a handful
of developers [9]. GNOME is one of the few projects that
appears to break this rule, given that more than 500 peo-
ple have “write access” to its CVS repository. Zawinsky,
a Mozilla developer, provides insight to this phenomenon:
“If you have a project that has five people who write 80% of
the code, and a hundred people who have contributed bug
fixes or a few hundred lines of code here and there, is that a
’105-programmer project?” (as cited in [8]).

A preliminary analysis of the development logs appears
to agree with Zawinsky’s view. Most modules have few
developers who write most of the code. For example, Evo-
lution (the mail client of the GNOME project) is composed
of approximately 160kLOCS (Feb. 2003) and almost 50%
of the times the source code has been modified, the change
can be attributed to one of 5 developers (see figure 1) [5].

The success of the GNOME project seems to lie in the
division of the project into manageable modules in which a
handful of developers (a team) can concentrate. The amount
of communication between developers is therefore mini-
mized.

As some modules grow into large entities themselves,
they are then broken into smaller modules. For example,
Evolution is broken into slightly more than 20 submodules,
each as independent as possible from the rest. In includes
modules dedicated to user interface, different mail libraries,
filters, importers, documentation, translations, etc.

4. Requirements

As described in [13], most OSS projects do not have a
traditional requirement’s engineering phase. Specially at

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 5 25 125

%
 o

f d
ev

el
op

er
s

Number of developers (log scale)

Number of transactions per each developer, Accumulative

Transactions

Figure 1. This plot shows the number of CVS
transactions committed to Evolution per de-
veloper. From a total of 196 developers, 5 ac-
count for 47% of the CVS transactions, while
20 account for 81% of the transactions, and
55 have done 95% of them.

the beginning of GNOME, the only stakeholders were the
developers who acted as users, investors, coders, testers,
documenters, etc., with little interest in the commercial suc-
cess of the project, but who, at the same time, wanted to
achieve respect from their peers for their development abil-
ities. One of the main goals of the developers is to produce
software that is used by its associated community.

In particular, we can identify the following sources of
requirements in GNOME:

� Vision. One or several leaders provide a list of require-
ments that the system should satisfy. In GNOME this
is epitomized by the following non-functional require-
ment: “GNOME should be completely free software”
(free as defined by the Free Software Foundation).

� Reference Applications. Many of its components are
created with the goal of replacing similar applications.
The GNOME components should have most if not the
same functionality as these reference applications. For
example, gnumeric uses Microsoft Excel as its refer-
ence, ggv uses gv and the kghostview, Evolution uses
Microsoft Outlook and Lotus Notes.

� Asserted Requirements. In few cases, the requirements
for a module or component are born from a discussion
in a mailing list. In some cases, a requirement emerges
from a discussion whose original intention was not to
do requirement analysis. In other instances (as it is the
case of Evolution), a person posts a clear question in-
stigating discussion on the potential requirements that
a tool should have. Evolution was born when sev-

2

eral hundred messages were created describing the re-
quirements (functional and non-functional) that a good
mailer should had before coding started.

� A prototype. Many projects start with an artifact as a
way to clearly state some of the requirements needed in
the final application. Frequently a developer proposes
a feature, implements it, and presents it to the rest, who
then decides on its value and chooses to accept the pro-
totype or scrap the idea [7]. GNOME started with a
prototype (version 0.1) created by Miguel de Icaza as
the starting point of the project.

� Post-hoc requirements. In this case, a feature in the
final project is added to a module because a developer
wants that feature and he or she is willing to do most
of the work, from requirements to implementation and
testing. This feature might be unknown by the rest of
the development team until the author provides them
with a patch, and a request to add the feature to the
module.

Regardless of the method used, requirements are usu-
ally gathered and prioritize by the leader of the project, the
maintainer or maintainers of the module and potentially the
Foundation (see section 6). A maintainer has the power to
decide which requirements are to be implemented and in
which order. The rest of the developers could provide input
and apply pressure on the maintainers to shape their deci-
sions (as in post-hoc requirements). Sometimes a subset of
the developers group might not agree with the maintainer’s
view, and could potentially jeopardize the project, and cre-
ate what is known as a fork (see section 5). So far this has
not happened within GNOME.

5. Module Maintainers

Module maintainers serve the roles of leaders for their
module. [10] identified the main roles of a leader in an OSS
project as:

� to provide a vision;

� to divide the project into parts in which individuals can
tackle independent tasks;

� to attract developers to the project;

� to keep the project together and prevent forking.

The success of an OSS project is dependent on the abil-
ity of its maintainer to divide it into small parts in which
developers can work with minimal communication between
each other and, with minimal impact to the work of others
[10]. GNOME has been able to attract and maintain good,

trustworthy maintainers in its most important modules due
mainly by being employees paid to work on GNOME by
different organizations.

5.1. The Paid Employees

As we described in [4], several companies have been
subsidizing the development of GNOME. RedHat, Sun Mi-
crosystems, and Ximian are some of the companies who pay
full time employees to work on GNOME. Paid employees
are usually responsible for the following tasks: project de-
sign and coordination, testing, documentation, and bug fix-
ing. These tasks are usually less attractive to volunteers. By
taking care of them, the paid employees make sure that the
development of GNOME continues at a steady pace. Some
paid employees also take responsibility (as maintainers) for
some of the critical parts of the project, such as gtk+ and
CORBA (RedHat), the file manager Nautilus (Eazel, now
bankrupt), the Evolution (Ximian), etc. Paid employees
contribute not only in the form of code. One of the most vis-
ible contributions of Sun employees is the proposal of the
GNOME Accessibility Framework, which aims at guaran-
teeing that GNOME can be used by a vast variety of users,
including persons with disabilities.

In the case of evolution, the top 10 contributors (which
account for almost 70% of the CVS commits) are all Ximian
employees.

Volunteers still play a very important role in the project
and their contributions are everywhere: as maintainers and
contributors to modules, as bug hunters, as documenters, as
beta testers, etc. In particular, there is one area of GNOME
that remains done mainly by volunteers: internationaliza-
tion. The translation of GNOME is done by small teams of
volunteers (volunteers who usually speak the language in
question and who are interesting in seeing support for their
language in GNOME).

As with any other open source project, GNOME is a
meritocracy, where people are valued by the quality (and
quantity) of their contributions. We are currently evaluating
the commit logs to analyze the amount and type of contri-
butions from these paid employees to the project and how
they compare to the contributions of volunteers. Most of the
paid developers in GNOME were at some point volunteers.
Their commitment to the project got them a job to continue
to do what they did before as a hobby.

6. The GNOME Foundation

Until 2000, GNOME was a run by a “legislature” where
each of its developers had a voice and a vote and the de-
veloper’s mailing list was the “floor” where the issues were
discussed. Miguel de Icaza served as the “constitutional
monarch” and “supreme court” of the project, and had the

3

final say on any unsolvable disputes. This model did not
scale well, and was complicated when Miguel de Icaza cre-
ated Helixcode (now Ximian), a commercial venture aimed
at continuing the development of GNOME, planning to gen-
erate income by selling services around it.

In August 2000 the GNOME Foundation was instituted.
The mandate of the Foundation is “to further the goal of the
GNOME Project: to create a computing platform for use
by the general public that is completely free software.” [1]
The Foundation fulfills the following four roles [11]: 1) it
provides a democratic process in which the entire GNOME
development community can have a voice; 2) it is the re-
sponsible for communicating information about GNOME
to the media and corporations; 3) it will guarantee that the
decisions on the future of GNOME are done in an open and
transparent way; 4) it is a legal entity that can accept dona-
tions and make purchases to benefit GNOME.

The Foundation is composed of four entities: its mem-
bers (any contributor to the project can apply for mem-
bership); the board of directors (composed of 11 demo-
cratically elected contributors, with at most four with the
same corporate affiliation), the advisory board (composed
of companies and non-for-profit organizations), and the ex-
ecutive director. As defined by the Foundation’s charter, the
board of directors is the primary decision-making body of
the GNOME Foundation. The members of the board are
supposed to serve in a personal capacity and not as repre-
sentatives of their employers. The Board meets regularly
(usually every two weeks, via telephone call) to discuss the
current issues and take decisions in behalf of the entire com-
munity. The minutes of each meeting are then published in
the main GNOME mailing list.

6.1. Committees

Given the lack of a single organization driving the devel-
opment according to its business goals, OSS projects tend to
rely in volunteering to do most of the administrative tasks
associated with that project. In GNOME, committees are
created around tasks that the Foundation identifies as im-
portant. Developers then volunteer to be members of these
committees.

Examples of committees are: “GUADEC” (responsible
for the organization of the conference),, “Web team” (re-
sponsible for keeping the Web site up-to-date), “sysadmin”
(responsible of system administration of the GNOME ma-
chines, the “release team” (responsible for planning and
releasing the official GNOME releases), the “Foundation
Membership” (responsible for maintaining the membership
list of the foundation), and several others.

6.2. The Release Team

Each individual module has its own development time-
line, and objectives. Planning and coordination of the over-
all project is done by the Release Team. They are respon-
sible for developing, in coordination with the module man-
tainers, release schedules for the different modules, and the
schedule of the overall project. They also keep track of
the development of the project and its modules, making
sure that everything stays within schedule. Jeff Waugh, a
GNOME Foundation member, summarized the accomplish-
ment of the team and the skills required (in his message of
candidacy to the Board of Directors in 2002):

[The Release Team] has earned the trust of
the GNOME developer community, madly hand-
waved the GNOME 2.0 project back on track, and
brought strong co-operation and “the love” back
to the project after a short hiatus. It has required
an interesting combination of skills, from cheer-
leading and Maciej-style police brutality to subtle
diplomacy and ’networking’.

7. Communication

Developers are located in many different places all
around the world. As described above, some are volun-
teers and the rest works for different organizations (and
even within those organizations, they might still be located
in different parts of the world, as it is the case with some
Ximian developers). The GNOME communication relies
on the following:

� Mailing Lists. The GNOME project has extensively
used mailing lists. These lists have a wide range of
purposes: some are intended for final users, some for
particular components of the software, some for an-
nouncements, etc. Mailing lists provide a trail of deci-
sion making for the project.

� IRC: Internet Relay Chat. The “watercooler conversa-
tions” have been mimicked by using irc. Developers
connect to a common IRC server/channel, and wait for
other users to connect. The conversation is informal,
with no real agenda.

� Web sites. The Web sites of the project comprise a
large amount of information, intended for every type
contributor to the project (coders, bug reporters, bug
hunters, documenters, translators, etc).

� GUADEC, the GNOME Conference is a Foundation’s
effort to get developers together. Its goal is to provide
a venue for discussion, interaction, and training. The

4

Foundation attempts to support many of the developers
who cannot afford their own traveling expenses. This
year’s GUADEC will last 5 days and will take place in
Dublin, Ireland.

� The GNOME Summaries. Every two weeks a sum-
mary is published in the GNOME mailing list. It usu-
ally contains the most relevant events of the period,
links to new or improved documentation, news spe-
cific to different GNOME modules, a “Hacker Activ-
ity” section, enumerating the most active modules and
the most active developers in the project, and a bug-
hunting section, listing the number of current bugs per
module including the progress made during the period.

8. Conclusions

After almost 6 years of development, GNOME has
demonstrated to be a success. One of the major accomplish-
ments of the project was the decision of Sun to replace its
outdated CDE with GNOME. Its “free software” nature has
created special requirements in the way that the project is
organized and managed. Furthermore, GNOME is a project
where people employed by different companies and vol-
unteers work together with a common goal. Developers
contribute in a wide range of ways (code, testing, bug re-
ports, documentation, artwork, bug-hunting, system admin-
istration) and are located across the world, relying on the
ability of its leaders and maintainers to manage the project,
on the Internet as its communication channel and on sev-
eral tools (such as mailing list, Web pages, CVS, Bugzilla)
to maintain a good-enough communication that allows for
the project to proceed. Recently, the Foundation has taken
the responsibility of giving the project a coherent vision for
the present and into the future, aimed at guaranteeing that
GNOME continues to fulfill its main goal: “to create a com-
puting platform for use by the general public that is com-
pletely free software.”

About the author

Daniel M. German is a member of the GNOME Founda-
tion and was the maintainer of ggv, the PostScript viewer for
the GNOME project. He is currently assistant professor of
computer science at the University of Victoria, in Canada.
In his spare time he enjoys hacking free software.

References

[1] GNOME Foundation Charter Draft 0.61.
http://foundation.gnome.org/charter.html, October 2000.

[2] J. Charles. Linux Support Ranges from GUI to Big Blue.
Computer, 32(5):20–22, May 1999.

[3] M. de Icaza. GNOME History.
http://primates.helixcode.com/˜miguel/gnome-history.html,
2002.

[4] D. M. German. The evolution of the GNOME Project. In
Proceedings of the 2nd Workshop on Open Source Software
Engineering, 2002.

[5] D. M. German and A. Mockus. Automating the measure-
ment of open source projects. Submitted for publication,
2003.

[6] T. Gwynne. GNOME FAQ.
http://www.gnome.org/faqs/users-faq/, 2003.

[7] S. Hissam, C. B. Weinstock, D. Plakosh, and J. Asundi.
Perspectives on open-source software. Technical Report
CMU/SEI-2001-TR-019, Software Engineering Institute -
Carnegie Mellon, November 2001.

[8] P. Jones. Brooks’ law and open source: The more the mer-
rier? does the open source development method defy the
adage about cooks in the kitchen? IBM developerWorks,
August 20, 2002.

[9] S. Krishnamurthy. Cave or Community? An Empirical Ex-
amination of 100 Mature Open Source Projects. First Mon-
day, 7(6), June 2002.

[10] J. Lerner and J. Triole. The Simple Economics of Open
Source.

[11] D. Mueth and H. Pennington. GNOME Foundation FAQ.
http://foundation.gnome.org/faq.html, 2002.

[12] B. Perens. Open Sources: Voices from the Open Source
Revolution, chapter The Open Source Definition. O’Reilly,
1999.

[13] W. Scacchi. Understanding the requirements for developing
open source software systems. IEE Software, 149(1):24–39,
February 2002.

5

