
 

GSD'03 
The International Workshop 

on Global Software 
Development 

 

ICSE’03 
International Conference on Software Engineering 

Portland, Oregon 
May 9, 2003 



 



TABLE OF CONTENTS 
 

WORKSHOP INTRODUCTION 
Daniela Damian, Filippo Lanubile, Heather Oppenheimer, “Addressing the Challenges of Software 

Industry Globalization: The Workshop on Global Software Development” ....................................... 3 
 

KEYNOTE ADDRESS 
James Herbsleb, “Research Methods and Theory in Global Software Development” ............................... 5 
 

SESSION 1: TOOL SUPPORT  
Daniela Damian, James Chisan, Polly Allen, Brian Corrie,  “Awareness meets requirements 

management: awareness needs in global software development” ....................................................... 7 
Filippo Lanubile,  “A P2P Toolset for Distributed Requirements Elicitation”......................................... 12 
Lerina Aversano, Aniello Cimitile, Andrea De Lucia,  “A Communication Protocol for Distributed 

Process Management” ....................................................................................................................... 16 
Kazuhiro Fujieda and Koichiro Ochimizu,  “Investigation of Repository Reprecation Models in   

Globally Distributed Configuration Management”............................................................................ 21 
Andreas Braun, Allen H. Dutoit and Bernd Brügge,  “A Software Architecture for Knowledge 

Acquisition and Retrieval for Global Distributed Teams”................................................................. 24 
Oliver Creighton, Allen H. Dutoit, Bernd Br ugge,  “Supporting an Explicit Organizational Model in 

Global Software Engineering Projects” ............................................................................................. 30 
Naoufel Boulila, Allen H. Dutoit, Bernd Brügge, “D-Meeting: an Object-Oriented Framework for 

Supporting Distributed Modelling of Software”................................................................................ 34 
 

SESSION 2: EMPIRICAL STUDIES & EXPERIENCE REPORTS (1)  
Daniel M. German,  “GNOME, a case of open source global software development” ............................ 39 
Lori Kiel,  “Experiences in Distributed Development: A Case Study” .................................................... 44 
Alessandro Bianchi, Danilo Caivano, Filippo Lanubile, Giuseppe Visaggio,  “Defect Detection in a 

Distributed Software Maintenance Project” ...................................................................................... 48 
Rafael Prikladnicki, Jorge Audy, Roberto Evaristo, “Requirements Management in Global Software 

Development: Preliminary Findings from a Case Study in a SW-CMM context” ............................ 53 
Maria Paasivaara,  “Communication Needs, Practices and Supporting Structures in Global Inter-

Organizational Software Development Projects” .............................................................................. 59 
 

SESSION 3: EMPIRICAL STUDIES & EXPERIENCE REPORTS (2) 
Alberto Espinosa and Erran Carmel,  “Modeling Coordination Costs Due to Time Separation in      

Global Software Teams”.................................................................................................................... 64 
Jarkko Pyysiäinen,  “Building Trust in Global Inter-Organizational Software Development Projects: 

Problems and Practices” .................................................................................................................... 69 
Samantha J. Butler, Sian Hope,  “Evaluating Effectiveness of Global Software Development Using      

the eXtreme Programming Development Framework (XPDF)”........................................................ 75 
Igor Čavrak and Rikard Land,  “Taking Global Software Development from Industry to University     

and Back Again.................................................................................................................................. 78 

 



 



 

Addressing the Challenges of Software Industry Globalization:  
The Workshop on Global Software Development 

 
 

Daniela Damian  Filippo Lanubile Heather L. Oppenheimer 
University of Victoria, BC, Canada  

danielad@cs.uvic.ca 
University of Bari, Italy 

lanubile@di.uniba.it 
Lucent Technologies, NJ, USA 

hoppenheimer@lucent.com 
  
 

Abstract 
 The goal of this workshop is to provide an 
opportunity for researchers and industry practitioners to 
explore both the state-of-the art and the state-of-the-
practice in global software development (GSD).  

Increased globalization of software development 
creates software engineering challenges due to the impact 
of temporal, geographical and cultural differences, and 
requires development of techniques and technologies to 
address these issues. The workshop will foster interaction 
between practitioners and researchers and help grow a 
community of interest in this area. Practitioners 
experiencing challenges in GSD will share their concerns 
and successful solutions and learn from research about 
current investigations. Researchers addressing GSD will 
gain a better understanding of the key issues facing 
practitioners and share their work in progress with others 
in the field.  

 
1. Workshop description 
 

This workshop is a continuation of the last five 
ICSE workshops on the same topic (1998-2002; [1-5]). 
Last year [5], after changing the title from the technology-
focused “Software Engineering over the Internet” to the 
more general “Global Software Development”, we 
observed increased participation by practitioners and more 
fruitful discussions between industry and academia. The 
report summarizing the workshop [5] discusses the 
challenges of engineering software in geographically 
distributed settings and indicates that further research 
needs to equally address issues of technical and social 
nature in global software development.   

Global software development has been and 
continues to be a phenomenon fueled by factors such as 
access to a large and specialized labor pool, reduction in 
development costs, global presence and proximity to the 
customers. While we are witnessing reports of successful 
global teams, research reveals that distance contributes to 
heightened complexity in organizational processes. 
Primarily, processes of communication, coordination and 

control are affected by distance, with direct consequences 
on how software is defined, constructed, tested and 
delivered to customers, as well as how its development is 
managed. Further, cultural issues are possibly a most 
confusing and interesting feature of global teams. 
Members with diverse attitudes towards hierarchy, time 
management and risk avoidance come to work together in 
cross-functional teams.  

These are only some of the factors that bring 
challenges to managing software projects developed in 
geographically distributed structures. Understanding the 
intricacies of this complex phenomenon is critical in 
framing research directions that aim at improving global 
software development practice. There is a need for tools 
and techniques that not only improve development 
processes but also address organizational and social issues 
in global software development. The previous workshops 
represented one more step in identifying and 
understanding issues in the complex phenomenon of 
global software development. In particular, the empirical 
evidence and discussions during the workshop last year 
indicate that technology is only a small part of enabling 
effective global teams; there is a strong need to address 
the study and practice of global software development 
from a multidisciplinary perspective, in which issues of 
social nature are as important as those of technical nature.  

In this workshop we intend to continue fostering 
fruitful interactions between industry practitioners and 
researchers and help grow a community of interest in this 
area. Industry practitioners experiencing challenges in 
GSD will be encouraged to share their own solutions and 
learn from research about current investigations in this 
area. Researchers addressing GSD will have the 
opportunity to gain a better understanding of the key 
issues facing industry practitioners and share their work in 
progress with others in the field.  
 
2. Workshop themes 

 
The workshop solicits papers on topics that include, 

but are not limited to: 



 

• Empirical evaluations of effectiveness of global 
software projects 

• Technologies & tools for distributed 
development environments 

• Software engineering methodologies & processes 
for GSD 

• Communication, collaboration, and knowledge 
management in distributed organizations 

 
3. Workshop format 

 
 This workshop will focus on identifying issues of 
Global Software Development, sharing solutions, and 
brainstorming new approaches to those issues. The 
workshop is open to all participants interested in the topic; 
position papers or technical papers, though encouraged, 
are not required for attendance.    

The “issues” part of the workshop will be dedicated 
to identifying, classifying, and categorizing Global 
Software Development issues that have been raised in 
previous literature, described in the position papers, and 
gathered during GSD 2002.  To help focus the afternoon 
discussion, we will create some GSD scenarios that typify 
key issues.  Throughout the workshop, participants can 
propose additional issues to be discussed at the end of the 
day. 

The “solutions” part of the workshop will study 
existing techniques and methods for Global Software 
development.  Selected authors of accepted technical 
papers will deliver very short presentations on their 
technological solutions or methodological approaches. 
Both existing and proposed technology will be assessed 
from a technical consistency perspective and evaluated for 
industrial applicability and feasibility. We will encourage 
each technical presenter to discuss how his or her ideas 
address or relate to the problems illustrated in the 
scenarios. The presentations will include a small amount 
of time for audience discussion of each set of 
presentations, hopefully allowing the group both to better 
understand the ideas and to relate them to other 
presentations and to the workshop themes. 

The final part of the workshop will be a plenary 
discussion aimed at finding synergies between solutions, 
where crossover work can lead to advances that might 
otherwise go unexplored, and identifying opportunities 
for further work.  At the end of the day, we will integrate 
and present the results of the discussion. The workshop 
will lead to a list of issues discussed, solutions proposed, 
conclusions reached, disagreements identified, and topics 
to be researched further.  

All accepted papers will be published in both the 
workshop proceedings and on the workshop website at: 
http://gsd2003.cs.uvic.ca

 
4. About the organizers 

 
Daniela Damian is an Assistant Professor at the 

University of Victoria, BC, Canada. She is a Killam 
Scholar in Canada and the recipient of the Best Paper 
Award at the International Conference on Requirements 
Engineering 2000. Daniela was the primary contact and 
co-organizer of the Workshop on Global Software 
Development (2002) and acted as a Member of Program 
Committee of the Australian Workshop on Requirements 
Engineering, 2000, 2001 and 2002, as well as the Time-
Constrained Requirements Engineering Workshop at the 
Int’l Conf. on Requirements Engineering ’02.  

Filippo Lanubile is an Associate Professor at the 
University of Bari, Italy. While at University of Maryland 
(1995-1997) he was a recipient of the NASA Group 
Achievement Award (1996). On 2002, he was a program 
committee member for the Workshop on Global Software 
Development and the Workshop on Cooperative Support 
for Distributed Software Engineering Processes. In the 
last years he was also a member of the program 
committees of METRICS and ICSM. In 1997, he 
organized the Int. Workshop on Empirical Studies of 
Software Maintenance. 

Heather Oppenheimer is a Distinguished Member of 
Technical Staff at Bell Laboratories, USA with 17 years 
of industry experience in software engineering.  She has 
managed groups responsible for system test, process & 
quality engineering, and internet & collaborative 
development environments as well as all other aspects of 
the development life cycle. She currently leads a 
corporate software best practices initiative, develops and 
instructs internal courses in software architecture for 
systems engineers and for managers of development 
teams and leads software architecture reviews and project 
management audits throughout the Lucent Technologies 
global organization.  She was a program committee 
member for the Workshop on Global Software 
Development (2002). 
 
References 
 
[1]. First Workshop on “Software Engineering over the 
Internet”, online proceedings: 
http://sern.ucalgary.ca/~maurer/ICSE98WS/ICSE98WS.html 
[2]. Second Workshop on “Software Engineering over the 
Internet”, online proceedings: 
http://sern.ucalgary.ca/~maurer/ICSE98WS/ICSE99WS.html 
[3]. Third Workshop on “Software Engineering over the 
Internet”, online proceedings: 
http://sern.ucalgary.ca/~maurer/ICSE98WS/ICSE2000WS.html 
[4]. Fourth Workshop on “Software Engineering over the 
Internet”, online proceedings: 
http://sern.ucalgary.ca/~maurer/ICSE98WS/ICSE2001WS.html 
[5]. International Workshop on Global Software Development, 
online proceedings at: http://www.cis.ohio-
state.edu/~nsridhar/ICSE02/GSD 



KEYNOTE ADDRESS 
 
 

Research Methods and Theory in Global Software 
Development 

 
 
 

James Herbsleb 
School of Computer Science 

Institute for Software Research International 
 
 
 

 
The talk will discuss the research methods that I have found to be useful in 
researching coordination issues in GSD, some of the challenges I've faced 
in addressing specific research questions, and ways of combining methods 
to address these problems. Finally, I will briefly present some current 
theoretical work that evolved from studies of GSD, that attempts to create 
empirically testable theory to characterize and make predictions about 
coordination of engineering decisions. I will argue that GSD provides a 
setting in which very general problems of coordination are naturally 
exposed to observation and experimentation. 
 



 



Awareness meets requirements management: awareness needs 
 in global software development  

 
  

Abstract 
There has been growing attention to awareness 

issues in group collaborative processes. In this paper we 
address workspace awareness in requirements 
management processes in global software development 
endeavors.  

When working on a software project, developers, 
system analysts, testers, and managers make use of 
information about current sets of requirements, design 
artifacts and relationships to customer requirements or 
test cases, as well as roles and responsibilities assigned 
to particular work artifacts. Co-located teams benefit 
from social mechanisms and processes that naturally 
facilitate the work practice and diminish the perceived 
need for explicit workspace awareness support. However, 
limited access to informal communication in 
geographically distributed teams make problems caused 
by reduced workspace awareness more acute.  

We propose a set of features for awareness support 
in geographically distributed requirements management 
activities and outline our first step in researching such 
awareness issues. In finding usable and sensible solutions 
to this problem, we may be creating solutions long 
overdue in requirements engineering in general. 
 
 
Introduction  

In this paper we address the issue of awareness in 
requirements management processes of global software 
development (GSD) teams. We believe that awareness 
needs are inherent in all collaborative processes of 
software development but particularly critical in 
requirements management activities carried throughout 
the software development life-cycle. When working on a 
software project, developers, system analysts, testers, and 
managers make use of information about sets of 
outstanding requirements, design artifacts and 
relationships to customer requirements, test cases and 
traceability links to system requirements, and roles and 
responsibilities assigned to work on particular work 

artifacts. We will refer to the availability of this 
information as workspace awareness.  

Co-located teams benefit from social mechanisms 
and processes that naturally facilitate the work practice 
and diminish the perceived need for explicit workspace 
awareness support. However, access to informal 
communication in geographically distributed teams is 
significantly limited. Therefore, problems caused by 
reduced workspace awareness are more acute.  

After discussing the need to address awareness in 
requirements management in GSD, this paper proposes a 
preliminary list of features of awareness support in 
requirements management, and discusses our immediate 
practical approach to research such awareness support in 
global software projects.  
 
The need to address awareness needs in 
requirements management in GSD 

The issue of awareness in requirements 
management in software development requires more 
adequate research treatment. Requirements as expressions 
of interests, goals and needs in software development 
reside with the stakeholders, who are rarely all physically 
co-located. Requirements are thus naturally distributed 
and we believe that the need for workspace awareness in 
requirements engineering has always existed. Even in 
ideal circumstances, it is extremely unlikely that all 
stakeholders of a software project would share the same 
workspace. Consider, for example, a classic three-
stakeholder software project consisting of customer, user 
and developer. If these stakeholders inhabited the same 
physical space, they would all have an intimate 
appreciation of the day-to-day dilemmas they each face. 
In reality these roles are separated organizationally, 
politically and especially, physically. Knowing the source 
or rationale of a particular requirement, who is working 
on implementing a particular requirement, or who has 
intimate knowledge about the rationale for a test scenario, 
is often not a trivial task. Although the requirements 
process might explicitly require the dissemination of such 

Daniela Damian, James Chisan, Polly Allen Brian Corrie 
Dept. of Computer Science 
University of Victoria, BC 

PO Box 3055, BC V8W 3P6, Canada  
{danielad,chisan,allenp}@uvic.ca 

New Media Innovation Centre 
600-515 West Hastings Street 

Vancouver, B.C., Canada, V6B 5K3 
Brian.Corrie@newmic.com 



information during the development process, this 
necessity is, unfortunately, rarely in place.  

Research into the tasks and communication 
patterns that occur in traditional large software projects 
(Curtis, Krasner and Iscoe, 1988) finds that in co-located 
environments information about design problems is often 
propagated informally, through people meeting in the 
hallway, chatting over coffee, during design or code 
review meetings. Although companies establish formal 
processes for making and reviewing decisions about the 
design of large systems, these structures are often 
ineffective for communicating design problems that arise 
in sections of the organization that are not part of the 
formal process. Rather, informal personal contacts are 
frequently the most effective way to communicate 
messages across organizational boundaries.  
 
Awareness in collaborative activities 

Awareness simply refers to knowledge one has of 
the environment in which one finds oneself, essentially, 
knowing what is going on (Endsley, 1995). Awareness is 
thought to have two basic characteristics. First, awareness 
constitutes accurate knowledge about the state of a 
dynamic, changing environment. Second through normal 
interactions with the environment one is able to maintain 
one’s awareness as a side effect of that interaction 
(Gutwin and Greenberg, 2001). This suggests awareness 
is naturally tacit, and that the means for acquiring this 
knowledge must be low-cost or even no cost for the 
recipient. Awareness serves to provide understanding of 
what is happening, who is affecting change, and where it 
is happening (Kobylinsky, Creighton, Dutoit and 
Bruegge, 2002). While there has been much attention paid 
to addressing general awareness in the physical 
environment, there is significant opportunity to support 
awareness of the workspace environment. In software 
development, this environment consists primarily of 
documents and code. Capitalizing on this opportunity 
requires comprehending what aspects of this environment 
may be of some value to stakeholders, how to capture 
those aspects and how to deliver awareness. 

A number of awareness issues have been identified 
with respect to requirements engineering, in particular 
document change and contact identification (Herbsleb, 
Mockus, Finholt and Grinter, 2000). It has been found 
that prescribed apparatus to propagate information 
updates (typically formal documentation) is untimely, if 
not ineffective. Furthermore, coordination and conflict 
resolution depends on knowing whom to contact about 
what, a task commonly impeded by the unavailability of 
such information. Progress often suffers from 
‘organizational amnesia’ where issues that have already 
been discussed and seemingly resolved are rehashed, 
reflecting limited collective memory (Catledge and Potts, 
1996). Attempts have been made to address these issues 

with tools such as instant messaging, shared calendars, 
and web boards. It is our belief that reliance on informal 
communication still prevails in spite of these attempts. 

GSD removes the informal interactions that 
normally promote awareness, so their effects need to be 
replicated by some kind of technology. While awareness 
about requirements information could be maintained in 
organizational and project documents, they have been 
shown to be very poor communication media (Curtis et 
al., 1988; Al-Rawas and Easterbrook, 1996). In particular, 
when requirements change, formal mechanisms such as 
documents do not react quickly enough and often news is 
propagated informally (Herbsleb et al, 2000) 

A strong motivator for this research is an earlier 
focused investigation of requirements engineering 
challenges in globally distributed software development 
organizations (Damian and Zowghi, 2002). This work 
clearly emphasizes the need for mechanisms to support 
awareness of requirements and related artefacts in their 
management in GSD. In software projects where 
stakeholders worked on several continents, there was 
incomplete and unreliable information about incoming 
requests, or priorities and issues related to particular 
software requirements. Not only did decision makers have 
difficulties keeping up to date on the latest decisions 
made on outstanding or emergent issues, but they also had 
difficulties obtaining a snapshot of the current version of 
features being implemented and related information such 
as decisions about change request approvals. Similarly, 
software developers reported difficulties in contacting 
originators of requirements and related issues, for 
clarification or elaboration, and in determining the 
responsible stakeholders for a particular decision.  

Although we are witnessing rapid advances in 
collaboration technologies that potentially provide 
support for software development in global settings, 
studies of global teams (e.g. (Damian and Zowghi, 2002), 
(Herbsleb et al, 2000)) identified that (1) collaborative 
technologies for global collaboration are used in an ad-
hoc and inadequate manner and (2) we lack an 
understanding of appropriate technological capabilities 
necessary to overcome challenges due to geographical 
distribution. 

 The main barrier to using collaborative tools more 
effectively is the lack of understanding we have of the 
tasks being performed and the information that is 
pertinent to completing those tasks successfully. In 
requirements management it is necessary to understand 
not only the formal process in great depth, but also to 
understand the informal processes that are used to 
facilitate the formal process. Generic awareness tools that 
provide information on the physical environment, 
although useful, do not provide specific information that 
is relevant to the requirements management process. It is 
our belief that tools that provide awareness about the 



artefacts involved in requirements management are 
required to deliver a successful distributed requirements 
management environment. 
 
Our Research approach 

In this paper we propose a set of features for 
awareness support in geographically distributed 
requirements management. We then discuss a research 
project in which we are attempting to study the features of 
such awareness support. We welcome feedback from 
discussions in the workshop. At the workshop we intend 
to report on our insights into refining these requirements 
from the experience of implementing a system to meet 
these requirements.  

In discussing the features of an awareness system in 
requirements management, we consider the support it 
should provide to tasks team members perform during 
requirement management activities, particularly tasks 
which require requirements awareness information. 
Features are highlighted in bold font while data to be 
tracked by the system is underlined. 

 
1. Allow project stakeholders to seek existing 

information  
In general, this is the simplest though potentially 

most frequent task that project team members 
perform during requirements management: finding 
information about requirements and  the status of 
their implementation. The awareness system should 
allow team members to query or browse information 
about: 
• Requirements: This includes a description of the 

requirement itself, meta-information about the 
requirement (such as rationale, priority, stability 
level) as well as inter-dependencies with other 
requirements and software development artefacts 
(e.g. design, code or test). Another piece of 
information that often resides with the team 
members and is rarely well documented are the 
issues and decisions related to particular 
requirements. The ability to access this rich 
information about requirements contributes to 
alleviating problems of “organizational amnesia” 
(Catlege and Potts, 2000). 

• People: This includes the roles and responsibilities 
for each team member related to the 
implementation of particular requirement(s), 
including personal contact information.  This 
contact information can be as simple as a phone 
number or an e-mail address, but in geographically 
distributed settings it may be important to include 
at a minimum, some indication of the team 
member’s office location and time zone.  More 
elaborately, it may even include physical 

awareness cues, giving system users indications of 
where team members can be found and how best to 
contact them. 

• Specific relationships between People and 
Requirements:  This information would identify 
initiators, decision makers, analysts, estimators and 
those currently responsible for the realization of a 
requirement. These relationships can be stored by 
tracking the initiators of a requirement, issues 
(including who initiated the issue, the resolution 
status of the issue, and any decisions made because 
of the issue), meetings (including the date, time 
and location of the meeting, the stakeholders 
involved, the issues discussed and decisions made), 
and change requests (including who initiated the 
change request, the status of a decision regarding 
the change request, who was involved in that 
decision and the decision itself).  

 
2. Support stakeholders in decision making  

Besides seeking information about requirements, 
for purely informative purposes, project members 
need the information outlined above to make 
decisions. Decisions with respect to the 
implementation of requirements are needed 
throughout the project lifetime. Project managers 
may try to decide how to assign resources to a 
project, whether it is feasible to implement a feature 
with the given resources, or whether the project plan 
is proceeding smoothly.  Team members may try to 
decide if their understanding of the current 
requirements baseline is correct, whether their 
implementation of a feature fits with the rationale 
behind a requirement, or who to contact for more 
information regarding a previously made decision. 
All decisions need to be recorded so that they can 
feed back into the system; in this way, all team 
members benefit from the group’s experience. 

The high-level task of decision making may 
involve any of the following subtasks: 

 
• Assigning responsibilities and managing a 

project 
At the beginning of a project, people or teams are 
made responsible for the implementation of each 
requirement or feature.  If the information about 
responsibilities is captured, it is possible to track 
the particular states of requirements with respect to 
their progress. This enables project members to 
easily become aware of who is working on a 
particular requirement and query the current state 
of requirements. Similarly, the project manager can 
easily identify assigned people responsible for the 
requirements from the assigned people and/or 



dynamically delegate the implementation of 
particular requirements to available personnel.  
 

• Gathering and managing estimation data 
Decision-makers often need to involve other 
stakeholders during estimation gathering for the 
purposes of negotiation and project management.  
This may be thought of as an iterative propagation 
of requests-for-information, clarifications and 
estimations between stakeholders.  Tracking 
information about the interactions that occurred, 
the history of estimates as clarifications were 
exchanged, and the eventual estimates on which 
decisions were based aids in future decision-
making, it also allows users to decide how the 
project is proceeding according to original, or 
amended, estimates. 

• Impact analysis 
To support decision-making, users need to analyze 
the impacts of potential decisions.  Again, 
awareness of the relationships between 
requirements, and between requirements and other 
artefacts of the software lifecycle, can help users 
understand the extent of changes being proposed. 
Further, the awareness of relationships between 
requirements and personnel responsible for the 
implementation of requirements is needed in the 
change notification process. Decisions made as a 
result of change requests need be made available to 
the affected stakeholders 
 

3. Decision notification 
For future decision-making activities, the decision 
must be documented.  This documentation should 
include references to the information listed above 
under “Seeking existing information”, as well as 
rationale for the final decision. An awareness tool 
must provide a means to decide which stakeholders 
are affected. To this end, the responsibilities of each 
team member must be tracked as mentioned above. 
Finally, the decision must be made available to all 
stakeholders to support coordination.  

 
Design and evaluation of awareness support 
in requirements management of global 
projects 

Our current endeavors in researching such 
awareness support for requirements management is a 
design and development effort for a tool that meets the 
criteria outlined above. A first step is being taken in a 
graduate course in the department of Computer Science at 
the University of Victoria, between January and April 
2003. This research effort will serve as a case study for 

requirements engineering, and indeed software system 
engineering, in a geographically distributed setting.  Our 
goal in this study is to discover if the requirements 
outlined above are complete or if other needs arise during 
the development of the tool. It is our hope that the 
workshop will present the authors with the opportunity to 
discuss the case study and our experience of designing 
and using awareness tools for requirements management 
in geographically distributed software development.  

In this course, the authors themselves design and 
develop awareness tools in a geographically distributed 
software development environment. The course provides 
the opportunity for a case study in which the features 
outlined above are considered as a starting point in the 
development. The activities of distributed requirements 
management are experienced during this development 
effort.  

Group face-to-face meetings will be held at the 
University of Victoria once every four weeks. Except for 
these meetings, one participant will be physically 
separated from the University, working in Vancouver and 
participating in formal group meetings via audio or 
videoconference.  During these formal meetings, 
documents and applications will be shared between 
locations using distributed application sharing software, 
and interactions will be facilitated and recorded using an 
electronic whiteboard. Microsoft’s NetMeeting software 
was chosen due to its ubiquitous availability on all 
Windows platforms. Requirements will be managed using 
the Rational RequistePro requirement management tool.  
The two other participants, both working on the 
University campus, will be co-located for formal 
meetings, but will attempt to avoid informal 
communication regarding the project outside of the 
computer-supported environment.  Informal 
communication between all three participants will be 
limited to electronic mail, instant-message and chat 
programs, voice-over-IP or telephone conversations, or 
videoconference tools. The group uses the Groove 
collaborative software (http://www.groove.net) to provide 
both formal collaboration capability (shared documents) 
as well as informal communication (instant messaging, 
threaded discussion groups, and physical awareness).  

The tools used for this project are a selection of 
widely available collaboration technologies that have 
been coalesced into a suite of tools directed at 
accomplishing the requirements management task. The 
tools being used for this project were selected based on 
several requirements: 

• They provided the collaboration capabilities 
required by the project 

• They provided adequate quality (audio, video, 
etc.) for the distributed collaboration 

• They were easily available to all collaborators 
 



Discussion 
We expect that our experience in developing the 

awareness tools using this computer-supported 
collaboration infrastructure will be invaluable. Our goal is 
to take a first step toward the development of an 
awareness tool that is consistent with the requirements 
described in this paper. By engaging in this exercise 
within a geographically distributed environment we 
expect to experience, first-hand, many of the same 
awareness problems, that we wish to address. We hope 
that both the development and this experience will equip 
us with improved understanding of the problem and 
indications for future direction of research and 
exploration. 

We are aware that this research project represents 
only a first step in studying the issue of awareness in 
requirements management for global software teams. We 
acknowledge a number of potential limitations of the 
study: 

- Due to the size of the group, the study is not fully 
representative of a global software development 
environment.  

- Due to the fact that the study is offered as part of a 
course, the project environment is controlled. 

- Due to the fact that the project only simulates 
global distribution, issues of cultural, 
organizational, and environmental factors are 
minimal 

 
Conclusion 

Requirements management is gaining increased 
interest and appreciation as a difficult task in software 
development.  Much of the information about project 
status and change management is typically propagated 
though informal communication in an organization.  
Perhaps these channels have always been inefficient; 
many system errors can still be traced to requirements 
misunderstandings, miscommunications or 
mismanagement.  Only since the large-scale adoption 
of GSD, and the removal of these informal 
mechanisms, has the problem of lack of awareness been 
highlighted.  In finding usable and sensible solutions to 
this problem, we may be creating solutions long 
overdue in requirements engineering in general. 

 
References: 

 
1. Al-Rawas, A. and Easterbrook, S. Communication 

problems in requirements engineering : a field study, 
Proc of the First Westminster Conference on 
Professional Awareness in Software Engineering, 
Londong, 1996, 47-60 

2. Catledge, L. and Potts, C., "Collaboration During 
Conceptual Design," in Proc. 2nd Intl. Conf. on 
Requirements Engineering, (Colorado Springs, 
Colorado, USA), pp. 182--189, 1996 

3. Curtis, B., Krasner, H. and Iscoe, N. A field study of 
the software design process for large systems, 
Communication of ACM, 31(11), 1988, 1268-1287 

4. Damian, D. and Zowghi, D. The impact of 
stakeholders’ geographical distribution on 
requirements engineering in a multi-site development 
organization, Proc. of the 10th IEEE Int’l Conference 
on Requirements Engineering (RE’02), Essen, 
Germany, 2002, 319-328 

5. Endsley M.R. Toward a Theory of Situation 
Awareness in Dynamic Systems, Human Factors, 
37(1), pp.65-84, 1995 

6. Gutwin, C., and Greenberg, S. (In Press) The 
Importance of Awareness for Team Cognition in 
Distributed Collaboration. In E. Salas, S. M. Fiore 
and J. A. Cannon-Bowers (Editors) Team Cognition: 
Process and Performance at the Inter- and Intra-
individual Level. APA Press. 2001 

7. Herbsleb, J.D., Mockus, A., Finholt, T.A., & Grinter, 
R.E.   Distance, Dependencies, and Delay in a Global 
Collaboration.  Proceedings of CSCW 2000, 
Philadelphia, PA, Dec. 2-7, 2000. 

8. Kobylinski, R., Creighton, O. Dutoit, A.H. and  
Bruegge, B. Building Awareness in Global Software 
Engineering Projects: Using Issues as Context, 
International Workshop on Global Software 
Development (co-located with ICSE '02), Orlando, 
FL, May 21, 2002. 

 



 
A P2P Toolset for Distributed Requirements Elicitation 

 
 

Filippo Lanubile 
Dipartimento di Informatica, University of Bari 

Via Orabona 4, 7026 Bari, Italy 
lanubile@di.uniba.it 

 
 

Abstract 
 

Geographically distributed teams need nowadays 
models and tools to support a load of activities that 
usually take place through the direct interaction among 
people.  Our research effort is aimed to understand how 
decentralized systems, based on a peer-to-peer 
architecture, can be exploited to support the key activities 
of global software development. As a first step, we have 
focused on requirements elicitation because it is among 
the most communication-rich processes of software 
development. This paper presents a toolset  for 
distributed requirements elicitation, which is developed 
on the basis of a peer-to-peer infrastructure platform, 
called Groove. 
 
1. Introduction 
 

Globally distributed workgroups usually rely on 
centralized systems, mostly built on top of web-based 
development platforms. Two examples of centralized 
infrastructure are SourceCast [10] and SourceForge [11], 
two collaborative development platforms, that include  
web-based access to defect and issue tracking, version 
control and configuration management, mailing lists and 
discussion forums. 

Our research effort is aimed to understand how 
decentralized systems, based on a peer-to-peer (P2P) 
architecture, can be exploited to support collaboration 
across time and space for global software development.  

Collaborative P2P applications are increasingly 
becoming popular to exchange instant messages, share 
common information and applications, and jointly review 
and edit documents. Collaborative P2P systems exhibit 
the following advantages with respect to client-server 
counterparts: autonomy, intermittency, and immediacy.  
- Autonomy. In a P2P system every peer is an equal 

participant while being a final authority over its local 
resources. In this way everyone can share 
information but at the same time can pose restrictions 
on confidential data through access rights 
management and data encryption. When enterprise 

data are distributed on many places and on different 
devices, P2P systems can provide an easier and 
cheaper alternative to enforcing a convergence into a 
centrally managed data repository.  

- Intermittency. P2P systems are designed by giving 
for grant that any peer can disappear at any time 
because of network disconnections, either deliberate 
or accidental. P2P collaborative systems use resource 
replication and different synchronization 
mechanisms, based on proxies for sending/receiving 
messages in the network on behalf of the 
disconnected sender/receiver. In this way, users can 
work to shared content even when offline and 
automatically propagate changes at the first 
reconnection.  

- Immediacy. P2P applications have shown themselves 
able to support direct exchanges between peers, as in 
the case of instant messaging. P2P collaboration 
systems, based on near real-time communication 
mechanisms and synchronous presence of the peers, 
can provide immediate responses by participants to 
enable effective person-to-person interaction. 

 
Under these conditions, a P2P collaborative 

infrastructure can complement or even replace client-
server platforms for the creation of ad-hoc or small 
software teams. Due to P2P own features, it is possible to 
quickly establish dynamic collaborative groups composed 
of people from different organizations accessing shared 
resources and interacting in a near real-time manner. 

Among the many collaborative software engineering 
activities, the focus in this paper is directed at the 
software requirements activities, specifically requirements 
elicitation. Eliciting requirements engage different 
stakeholders, both from the customer and the developer 
sides, who need to intensively communicate and 
collaborate. As a key part of the requirements engineering 
process, requirements elicitation has a great impact on the 
later development activities; any omission and 
incompleteness may lead to important mismatches 
between customers needs and released product. 



This paper introduces a distributed requirements 
elicitation toolset which was developed on the basis of a 
P2P infrastructure platform, called Groove. Section 2 
presents the functionality of the collaborative toolset for 
eliciting requirements from geographically dispersed 
stakeholders. Section 3 describes the P2P platform which 
we used as an application framework. Section 4 
concludes the paper and suggests opportunities for future 
joint research. 
 
2. Requirements elicitation toolset 
 

Requirements engineering is the most communication 
rich process of software development, and then the 
effectiveness of a requirements engineering process is 
greatly constrained by the geographical distance between 
stakeholders [3], as in the case of global software 
development.  

Some simple P2P tools have been already introduced 
to support communication between distant stakeholders. 
For instance, Microsoft’s NetMeeting has been used in 
requirements negotiation [2] for its instant messaging 
capabilities, to create a video and audio link between 
people, and to share desktop applications. But the features 
offered by generic tools provide a partial support to 
specific requirements engineering activities, and often 
there is no way to integrate them with commercially 
available requirements engineering tools, such as Rational 
RequisitePro.  

For this reason, there is a need to develop a tool 
infrastructure to support globally distributed workgroups 
when developing requirements. Given the characteristics 
of autonomy, intermittency and immediacy, we believe 
that a P2P-based toolset is suited for the cooperation-
intensive needs of requirements engineering activities.  

As a first step, we focused on requirements elicitation 
which is regarded as the first activity in the requirements 
engineering process [4]. Eliciting requirements is an 
information gathering activity with the goal to identify 
system stakeholders, their needs and expectations, system 
objectives and boundaries. Elicitation techniques include 
questionnaires and surveys, interviews and workshops, 
documentation analysis and participant observation.  

We developed a P2P toolset to be used for eliciting 
requirements in a distributed context. In the following we 
briefly describe each of the five tools comprising the 
integrated toolset. 
 
2.1. Stakeholders tool 
 

The first step in requirements elicitation is often the 
identification of who brings an interest in the software 
project, both on the customer and the supplier sides, and 
then will have an influence on requirements definition.  

The Stakeholders tool acts as an archive of 
information regarding the stakeholders involved in a 
project. The tool can be thought as a shared contacts list 
augmented with the annotation of the role (even multiple 
roles) in the software project. Given the great variability 
for role definition, the tool was developed with a set of 
default roles from the Volere requirements specification 
template [9], although it can be customized according to 
different needs. The tool accounts for changes of roles 
during the project lifetime, and for multiple roles of a 
single stakeholder. Provided that a stakeholder has been 
included, he or she can communicate with the other ones 
by either sending asynchronous messages or by inviting 
to join a chat.  
 
2.2. Interview tool 
 

Interviews are frequently used in requirements 
elicitation to gather detailed information from 
stakeholders. It also allows the requirements engineer to 
hear different viewpoints that might need to be 
reconciled.  

In this tool an interview is set up through a wizard. 
There are two types of available interviews: structured or 
unstructured; in the former case the requirements 
engineer can decide whether to prepare the interview 
from scratch  or not. If not, the tool supplies a set of 
interview templates for the elicitation of high-level 
system goals and architecturally significant requirements 
[5]. Using these templates, it is also possible to trace 
questions with respect to a requirements taxonomy. 

Another feature of this tool is the availability of 
multiple views of the interview according to the 
interviewee’s role. In this way the same templates can be 
customized for different stakeholders. 
 
2.3. Requirements tool 
 

The Requirements tool is used as a shared repository 
of elicited requirements. The tool exploits the P2P feature 
of data sharing: data are replicated (and encrypted) on 
everyone’s computer and made accessible even offline. 

A requirement is described by the following attributes: 
ID, version, name, rationale, description, priority, 
difficulty, stability, and status. An additional attribute, 
requirement type, was added accordingly to the 
requirements taxonomy used in the interview templates. 
In this way it is possible to trace stored requirements with 
related questions from the Interview tool. Users can also 
define new requirements categories. 
 
2.4. Workshop tool 
 

The Workshop tool replaces the usual face-to-face 
workshop in which a group of experts and stakeholders 



works together with the goal of information discovery 
and creation. Live discussions can be conducted either 
through a chat or an audio link.  

A workshop requires an agenda to let participants 
follow a discussion flow, and two specific roles: 
facilitator and scribe. The facilitator leads the process by 
monitoring the discussion and managing group’s 
dynamics. The scribe documents the group’s work by 
taking notes as the discussion proceeds.  

The tool helps to prepare the workshop through a 
wizard which lets to define the target, the discussion 
topics (they can be derived from interview logs), the 
participants (and their role) and the meeting schedule. 
 
2.5. Vote tool 
 

The Vote tool can be used in the context of a 
workshop, if controversies arise during discussion, or as a 
standalone tool as well.  

Voting includes a preparation phase in which it is 
possible to add open or closed-answer questions to a 
shared list. Voting can be set up as a secret or evident 
ballot, depending whether or not participants’ choices 
have to be kept anonymous.  

 
3. Decentralized platform 
 

We have implemented the requirements elicitation 
toolset on the basis of Groove, an extensible decentralized 
platform intended for communication, content sharing, 
and collaboration [6].  

Collaboration activities with Groove take place in a 
shared application space, which is accessed from a rich 
application client, called transceiver. A shared space, 
including tools and persistent data, is duplicated on every 
space member’s computer. Data within a shared space are 
encrypted, both on disk and over the network, to assure 
confidentiality and integrity. Both data and commands are 
transformed, stored and transmitted as XML documents. 

Every modification made to a shared space is 
propagated to the other peers. If users do not stay 
connected at the same time, the shared space gets 
synchronized when a peer goes online. In this way the 
state of the shared space remains the same for all peers.  

As other P2P systems, such as Napster, the actual 
interaction model of Groove is hybrid because peers can 
establish direct connections using a Groove's native P2P 
protocol called SSTP (Simple Symmetrical Transmission 
Protocol), while the following services are supplied 
through central servers: 
- Presence awareness: when a peer running Groove 

goes online, it registers with a presence server. In this 
way other peers can scan the presence server if 
interested in collaborating with other ones. 

- Relay: when a peer is offline, communications 
destined to it are sent to a relay server which will 
deliver data to the peer when it reconnects. Relay 
servers are also used when peers reside behind a 
firewall that only allows outbound connections. 
Since firewalls are usually configured to allow 
employees to access the web, Groove leverages this 
existing configuration to send and receive messages 
through HTTP tunneling. 

- Fanout: when the same information must be sent to 
many users at the same time, data are transmitted 
once to a server which retransmits them to other 
peers. 

 
With Groove, shared space members can use 

predefined tools supplied by Groove Networks or by third 
parties. Predefined tools include instant messaging, chat, 
threaded discussions, audio-conferencing, shared files, 
shared contacts, group calendaring, group editing, group 
drawing and co-browsing. Developers can also build their 
own applications in the form of single tools or integrated 
toolsets.  

To build the distributed requirements elicitation toolset 
we used Groove as an application framework, by reusing 
Groove’s critical services (storage, transport, encryption, 
synchronization, messaging, presence awareness) and 
default tools (e.g., Contact Manager, Outliner, Chat) with 
the addition of scripts and XML code, accordingly to the 
Groove Development Kit (at the time of development we 
used GDK 1.3). 

 
4. Conclusions 
 

P2P is not a new technology but it is now emerging as 
an alternative or complement to client-server models for 
designing collaborative development systems. In order to 
investigate issues that can be encountered when providing 
P2P tool support for global software development, we 
developed an integrated toolset for distributed 
requirements elicitation.  

In the field of collaborative software development 
environments the P2P technology has begun to being 
introduced. At University of Calgary, a project has 
recently started [1] to port an existing process-support 
environment (called MILOS) from a client-server model 
to a P2P model, thus relaxing centralized control. The 
migration project intends to use JXTA [7] as a P2P 
framework., JXTA is a set of protocols for P2P 
applications without restrictions to particular operating 
systems or network services. Although the JXTA 
specification is open to any programming language, the 
most widely used implementation is in Java.   

As for Groove, JXTA uses XML to exchange data 
between peers. However, JXTA and Groove are not fully 
comparable: the former is a low-level, general-purpose 



platform and, hence, provides only services and no built-
in tools, while the latter is a very full-featured 
collaborative application, which can also be used as a 
development platform. By the way, the author is taking 
part to the development of a P2P remote-conferencing 
tool, based on the JXTA framework. This is an open 
source project, hosted by jxta.org [8] and owned by Fabio 
Calefato at University of Bari.  

We wish that this paper will rise a discussion on 
developing and using tools to support collaborative 
activities for global software development. We also hope 
that the workshop will give us the opportunity to start 
collaborations for experimenting with the requirements 
elicitation toolset. 

  
5. References 
 
[1] S. Bowen, and F. Maurer,  “Using peer-to-peer 
technology to support global software development – 
some initial thoughts”, Proc. of the ICSE Int. Workshop 
on Global Software Development, Orlando, FL, USA, 
May 2002. 
[2] D. E. Damian, A. Eberlein, M. L. G. Shaw, and B. 
R. Gaines, “Using different communication media in 

requirements negotiation”, IEEE Software, 17(3), 
May/June 2000, pp.28-36. 
[3] D. E. Damian, “The study of requirements 
engineering in global software development: as 
challenging as important”, Proc. of the ICSE Int. 
Workshop on Global Software Development, Orlando, 
FL, USA, May 2002. 
[4] A.M. Davis, Software requirements: analysis and 
specification, Prentice-Hall Press, Upper Saddle River, 
NJ, 1990. 
[5] P. Eeles, “Capturing Architectural Requirements”, 
The Rational Edge, Nov. 2001, 
www.therationaledge.com/content/nov_01/t_architectural
Requirements_pe.html 
[6] Groove Networks, http://www.groove.net 
[7] jxta.org, Project JXTA, http://www.jxta.org 
[8] jxta.org, Project P2PConference, 
http://p2pconference.jxta.org 
[9] S. Robertson, and J. Robertson, Mastering the 
Requirements Process, Addison-Wesley, Boston, MA, 
1999. 
[10] CollabNet, http://www.collab.net 
[11] SourceForge.net, http://sourceforge.net 
 

 



 

A Communication Protocol for Distributed Process Management 
 

Lerina Aversano, Aniello Cimitile, Andrea De Lucia  
RCOST - Research Center On Software Technology 
Department of Engineering, University of Sannio  

Via Traiano, Palazzo ex-Poste – 82100, Benevento, Italy 
(aversano/cimitile/delucia)@unisannio.it 

 
 

Abstract 
 

Large scale software development processes imply the 
coordination and cooperation of several sites with a 
large number of people and sub processes. We present an 
asynchronous communication protocol for distributed 
process management adopted within the GENESIS 
(Generalized ENvironment for procESs management in 
cooperatIve Software engineering) project. The GENESIS 
process management sub-subsystem enables distributed 
process modeling and enactment on different 
organizational sites through an event dispatching 
architecture. 
 
1. Introduction 
 

Workflow management is a rapidly growing research 
and development area of very high practical relevance in 
business applications and software development [CL97; 
GHS95; ACF98; WfM99]. However, most existing 
workflow management systems have a monolithic and 
centralized architecture and therefore are not adequate to 
cope with the requirements that large scale software 
development processes pose. Large scale software 
development processes imply the coordination and 
cooperation of several sites with a large number of people 
and sub processes [MDB00, BSK97, GAH98]. The support 
for distributed process management is a relevant problem 
for two reasons.  

· distributed software processes may involve a 
large number of concurrent process instances which 
impose an adequate coordination support. Therefore, for 
sake of scalability and availability a software process 
needs to be distributed across multiple workflow engines 
running on the different sites involved;  

· when a process spans multiple sites that 
generally work in a largely autonomous manner, it may be 
required that those parts of a process are under the 
responsibility of a local project manager that can organize 
the sub-process in a more appropriate way. Thus, the 

partitioning and distribution of a process may fall out 
naturally from the organizational decentralization.  

In particular, the latter issue also poses problems 
concerned with the decentralized and autonomous 
modeling of distributed software processes. Most work on 
distributed process management focus on developing 
paradigms and architectures for the enactment of 
distributed processes and scarcely address decentralized 
process modeling [RS99, KM99, HK98, EP99, BSK97, 
GAH98, BDF96, C98, CDF01]. In most cases process 
modeling is a centralized activity and enactment of 
portions of the process is distributed on different 
workflow engines. In some cases, the central process 
model is collaboratively edited with the contribution of 
people on different sites [GAH98] and all sites have 
visibility of the overall process model. A different 
approach is used in OzWeb [BSK97] where process 
models are autonomously defined on the different sites 
and cooperates through specifically designed interfaces. 

In this paper we present the GENESIS (Generalized 
ENvironment for procESs management in cooperatIve 
Software engineering) approach to distributed process 
modeling. GENESIS is an on-going research project aiming 
at designing and developing a non-invasive and open 
source system to support software engineering processes 
in a highly distributed environment [RG02]. The GENESIS 
process modeling language is hierarchical. The global 
process is modeled and enacted on the coordinator site 
(that is the technical leader of distributed software project 
[KM99]), while sub-processes can be autonomously 
modeled and executed on different organizational sites. 
The global process model can be collaboratively edited by 
the project managers of the different sites. This is 
particularly important to define the interfaces between the 
global process model and the coordinated sub-processes.  

The paper is organized as follows. Section 2 discusses 
related work. Section 3 describes the overall architecture 
of GENESIS and the main features of the process modeling 
language, while Section 4 presents the asynchronous 
communication protocol for distributed process modeling 



and project management. Finally, Section 5 concludes and 
comments on future development. 
 
2. Related work 
 

In global and virtual enterprises, software processes 
consist of multiple sub-processes that may span 
organizational boundaries. Current commercial workflow 
technology does not provide the necessary functionality 
to model, enact, and manage distributed processes due to 
its mostly centralized server architecture. Modern 
workflow management systems exploit the web as a mean 
to enable distributed access to the facilities provided by 
the workflow engine [ABM97, HHM00, BT98, MDB00]. 
However, most of these systems are still based on a client-
server architecture and the problem of designing 
architectures for distributed process modeling and 
enactment of the process is still a research issue [RS99, 
KM99, HK98, EP99, BSK97, GAH98, BDF96, C98, CDF01, 
WfM99]. However, most approaches do not discuss 
issues concerned with distributed process modeling.  

PROSYT is an artefact based PSEE [C98]. Each artefact 
produced during the process is an instance of some 
artefact type, which describes its internal structure and 
behaviour. All the routing in this model is based on the 
artefact and the operations on them. Boolean expressions 
are used to express the constraints under which 
operations are allowed to start. PROSYT also allows for 
distributed enactment facilitated by an event-based 
middleware [CDF01] (the same middleware is also used by 
the OPSS WfMS [CDF01]). 

In [EP99] the authors propose an approach for the 
distributed execution that exploits the central role of an 
event notification service, READY. Workflow participants, 
both workflow engines and agents, can subscribe to 
events that trigger the start of workflow activities and 
processes, and events that describe state changes  in the 
workflow processes they are interested in. Therefore, the 
configuration of the participants in a workflow can be 
dynamically changed without requiring any modifications 
to the existing architecture. Moreover, time-related 
constructs for addressing the time aspects of process 
management are provided. 

The Endevors project [HK98] proposes an approach to 
provide a coordination mechanism for distributed process 
execution and tool integration by using the Hypertext 
Transfer Protocol (HTTP). The system uses a layered 
object model to provide for the object-oriented definition 
and specification of process artifacts, activities, and 
resources. The intent for distribution is to support a wide 
range of configurations with varying degrees and kinds of 
distribution. Stand-alone with a base system configuration 
without distributed components, Multi-user with a single 

remote data-store, Multi-user with a single remote data-
store are the configuration experimented for distribution.  

Kötting and Maurer [KM99] propose an extension of 
MILOS [KM99] which focuses on the process support for 
virtual corporation by integrating the process modeling 
with project planning and enactment in distributed 
environments. They propose three different approaches 
for distributed process enactment:  
– replicating the workflow engine (process model and 

data) on several servers and propagating a change to 
the data on one server to all the others; 

– maintaining the process model on the central 
(coordinator) site and giving the possibility to the 
other servers to exchange the data they need for local 
process execution with the coordinator site; 

– maintaining different portion of process model and 
data on different workflow engines which exchange 
data according to a peer-to-peer architecture. 

The authors do not address the problem of 
decentralized process modeling. Grundy et al. [GAH98] 
focus on problems concerning the distribution in process 
modeling. The proposed system provides mechanisms for 
collaboratively editing process models both in a 
synchronous and asynchronous way, together with 
version management support. The architecture is based on 
a central site maintaining the process model and 
distributed sites enacting portions of the model.  

In the Ozweb environment the peer-to-peer paradigm 
for distribution is adopted [BSK97]. Here a decentralized 
system consists of independent sub systems spread 
among multiple sites. In particular, the authors focus on 
the process autonomy of each sub system that should be 
self contained and operationally independent. To this aim 
they introduce the concept of “treats” to guarantee 
compliance of the artifacts exchanged between sub-
processes. 

Our approach mixes both these features: we have the 
notion of a coordinator site where a global process can be 
defined in a collaborative way by the project managers of 
the different cooperating sites of a virtual corporation. 
Sub-processes executed on different sites are 
autonomously defines and only have to respect the 
interfaces defined at the global level. Moreover, the dept 
of the hierarchical process model is not limited at only two 
levels, thus allowing the possibility for a partner of the 
virtual corporation to have further sub-contractors. 

 
3. GENESIS architecture for distributed 
process management 
 

Traditional workflow management systems do not 
provide adequate support for the evolution of software 
organizations towards distributed virtual corporation 



models. The main open problem remains the systematic 
definition of distributed process models and their 
enactment across multiple sites using appropriate 
abstractions and mechanisms. GENESIS environment has 
been developed with the aim to cope these problems. The 
environment provide a special support for distributed 
scenario, from the modeling of a distributed process to its 
enactment.  

Distributed projects in GENESIS are organized in a 
hierarchical way. For example, a two level project will 
include a project coordinator site, managing the project at 
the global level and a number of local sites, managing 
specific project workpackages. The coordinator is in 
charge of modeling and executing the global process, 
while the local sites are in charge of modeling and 
executing the sub-processes concerning their 
workpackages. Therefore, each GENESIS site includes 
different components (see Figure 1):  

· a workflow management system to model and 
enact software processes; 

· an artifact management system to store and 
retrieve the artifacts produced within a process;  

· a resource management system to allocate 
resources, in particular human resources, to a project;  

· an event engine to collect and dispatch events 
raised during process management, such as the 
termination of an activity or the production of an artifact, 
in particular between the coordinator and local sites; 

· a notification and communication system to 
enable users of the environment to communicate and to 
send notifications about particular events of interest. 

Distributed process modeling is made in an 
asynchronous way (see next section for the 
communication protocol). The global process model 
includes super-activities corresponding to workpackages 
that are associated to the sites where the actual work is 
performed. The local site independently creates the 
process model for the management of the workpackage. 
The only requirements are that a sub-process has been 
created when the corresponding super-activity in the 
global process model has to be enacted and the sub-
process interface (in terms of input / output artifacts) is 
conform to that of the macro-activity (see Figure 2). 
Besides super-activities, a process model can also 
contains global activities, i.e. activities that can be 
collaboratively performed by workers distributed across 
different sites. The project manager of each site involved 
in a global activity is in charge of providing the needed 
human resources for the activity.  

In GENESIS the process modeling language is the same 
both at global level, to model the global software process 
with the coordination of the composing sub-processes, 
and at local level, to model the sub-processes at the single 
GENESIS sites. At both levels, our concern has been to 

create a language for defining processes in a way general 
enough to respect the single organization rules, in order to 
keep low the intrusiveness of the platform. In this respect, 
each activity (or work item) of the process model is 
essentially described by the artifacts that will produce, 
and freedom is left to the worker(s) to decide how to 
actually perform that activity. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – GENESIS site architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Hierarchical project decomposition 

GENESIS provides two process modeling levels. At the 
first level a process designer is able to create abstract 
process models, through the Process Definition Tool, 
according to specific organization standards. Abstract 
process models include description of activities (including 
roles of people performing an activity and types of input 
and output artifacts) and enactment rules (or transitions) 
that basically describe control and data (artifact)  flow 
between activities and are expressed according to the 
Event-Condition-Action paradigm. Abstract process 
models have to be customized for specific projects by 
specifying project data, such as actual people performing 
activities and actual artifacts. Project managers can use 
them as templates to create concrete process models, 
through the Project Management Tool, for a specific 
project that can be enacted by the workflow engine. 

 
Other 
Sites 

Resource  
Management 

System 

Artefact  
Management

System  

Event  
Engine 

Client Coordination
Layer  

WfMS  

Project 
Management 

Tool 

Workflow 
Engine  Worklist 

Handler  

Process 
Definition 

Tool 
Workflow 

Support  
Database 

Communication 
System 

 

COORDINATOR SITE 

local 
proiect 

global project 

LOCAL SITE 

local proiect 

LOCAL SITE 

local  proiect local proiect 

LOCAL SITE 



Different process instances may be created and enacted 
according to the same concrete process model.  

Further details concerning the process modeling 
language are described in [AC03]. 
 
4. Distributed process modeling 
 
In the GENESIS environment, an asynchronous protocol 
has been defined for the communication between the 
global coordinator level and the local coordinated sites 
during the instantiation of a distributed software project.  
The protocol used for the communication is described in 
the following. We distinguish three main phases: the 
creation of the project on both the coordinator site and the 
local sites, where the resource managers associate people 
to the project and select the project managers; the 
definition of the global process involving project 
managers of the different sites; and the definition of the 
local processes, independently defined by the different 
local project managers.  
 
4.1 Project creation 
At the starting of a new project the resource manager of 
the global site creates a project using the resource 
management tool provided by the platform. This means 
that s/he selects the human resources allocated on the 
global site and the local sites participating to the project. 
A “Global Project Creation” event is sent to the involved 
sites and notified to the global project manager.  
The resource management tools that locally receive this 
event automatically store this information locally. Then, 
each resource manager of an involved local site decides 
the allocations of the human resources and the local 
project manager. The corresponding event is “Local 
Project Creation”, which is sent to resource management 
tool of the coordinator site, to store this information at the 
global level. The event is also notified to the global and 
local project managers.  
 
4.2 Global Process Definition 
Once the global project manager has received the 
notification concerning the “Global Project Creation”, s/he 
can start defining the needed concrete process models for 
the project , starting from available abstract process 
models (if a suitable abstract process model is not 
available, it has to be created first). The global process 
model includes super-activities to be assigned to local 
sites and global activities, carried out by groups of people 
distributed among different sites. Local project managers 
can collaborate with the global project manager for the 
definition of the global process, as soon as they are 
selected by the local resource manager.  

Each super-activity has to be assigned by the project 
manager to a site participating in the project. In this case a 
“Super Activity Creation” event is sent to the local site 
together with information concerning the super-activity 
(start and end date, artifact types, etc.). The project 
management tool of the local site automatically stores this 
information and associates them locally to the project. The 
event is also notified to the project manager of the local 
site, as soon as s/he will be available.  
For each global activity, the GPM can select for each site 
the number of required people and send this information 
together with the role associated to the global activity and 
the work modality (collaborative/single user) to the project 
manager of the local sites. A “Global Activity Creation” 
event is sent to each site involved in the global activity.  
A concrete global process can start when it is completed, 
independently of the local process definition status (see 
next sub-section). Checks are made at enactment time to 
make sure that all super-activities and global activities 
have the needed resources allocated. 
 
4.3 Local Process Definition 
For each super-activity assigned to a local site, the project 
manager creates the corresponding concrete local process 
model (again, starting from an available abstract process 
model). When the concrete local process is completed, a 
“Local Process Model Creation” event is sent to the 
project management tool of the coordinator site which 
stores this information and associates it to the 
corresponding super-activity. The event is also notified to 
the global project manager.  
The project manager of a local site involved in a global 
activity must select the human resources that will 
participate to the activity. When this is done a “Global 
User Assigned” event is sent to the project management 
tool of the global site, to store this information at the 
global level. The event is also notified to the global project 
manager. 
 
5. Conclusion 
 
In this paper we have presented the GENESIS approach to 
distributed process modeling. The definition of the 
GENESIS platform requirements for distribution, especially 
for the process modeling facilities, followed a strict 
interaction with the pilot users (the industrial partners) of 
the GENESIS project [BC03]. At the starting of the project 
we collected detailed description of their work modalities 
on distributed processes and emerging needs. We 
considered all the problems express by them when 
organizing and conducting  distributed processes and 
translated them in formal requirements for the 



implementation of the workflow management system of the 
GENESIS platform.  
Currently, a single site implementation of GENESIS is 
already available, while the implementation of the features 
for distributed modeling and enactment is in progress. 
Each GENESIS site is realized as a web application: the 
user interface and the coordination layer are realized using 
JSP and servlets (Tomcat being the web server), while the 
other components are developed using the Java 2 Platform 
Standard Edition. The communication between the 
coordination layer and the different subsystems 
composing a GENESIS site is based on Java RMI. The 
WfMS supporting database is based on MySQL Server.  
 
ACKNOWLEDGMENTS  
This work has been partially supported by the European 
Commission under Contract No. IST-2000-29380, Project 
GENESIS - http://www.ist -genesis.org). 

 

References 
[ABM97]C.K. Ames, S.C. Burleigh, and S.J. Mitchell, 

“WWWorkflow: World Wide Web based workflow”, 
Proceedings of the 13th International Conference on 
System Sciences, 1997, pp. 397–404.  

[ACF98] V. Ambriola, R. Conradi, and A. Fuggetta, “Assessing 
Process-Centered Software Engineering Environments”, 
ACM Transaction on Software Engineering and 
Methodology, vol. 6, no. 3, 1998, pp. 283-328. 

[AC03] L. Aversano, A. Cimitile, A. De Lucia, S. Stefanucci, 
M. L. Villani, “Workflow Management in the GENESIS 
Environment”, 2nd Workshop on Cooperative Supports for 
Distributed Software Engineering Processes, Benevento, 
Italy, 2003. 

[BC03] D. Ballarini, M. Cadoli, M. Gaeta, T. Mancini, M. 
Mecella, P. Ritrovato and G. Santucci, “Modeling Real 
Requirements for Cooperative Software Development: A 
Case Study”, 2nd Workshop on Cooperative Supports for 
Distributed Software Engineering Processes, Benevento, 
Italy, 2003. 

[BDF96] S. Bandinelli, E. Di Nitto, and A. Fuggetta, 
“Supporting Cooperation in the SPADE-1 Environment”, 
IEEE Transactions on Software Engineering, vol. 22, no. 
12, 1996, pp. 841-865. 

[BSK97] I. Z. Ben-Shaul and G.E. Kaiser, “Federating Process-
Centered Environments: the Oz Experience”, International 
Journal of Automated Software Engineering, 1997. 

[BT98] Gragory Alan Bolcer and Richard N. Taylor, 
“Advanced workflow management technologies”, Software 
Process Improvement and Practice, vol 4 n. 3, pp 125-
171, 1998. 

[CL97] D. Chan, and K.R.P.H. Leung, “A workflow Vista of 
the software Process”, IEEE 8th International Workshop 
on Database and Expert Systems Applications, 1997. 

[C98] G. Cugola, “Tolerating Deviations in Process Support 
Systems via Flexible Enactment of Process Models”, IEEE 
Transactions on Software Engineering, vol. 24 no. 11, 
1998, pp. 982-1001,. 

[CDF01] G. Cugola, E. Di Nitto, and A. Fuggetta, “The JEDI 
Event-Based Infrastructure and Its Application to the 
Development of the OPSS WFMS”, IEEE Transactions on 
Software Engineering, vol. 27, no. 9, 2001, pp. 827-850. 

[EP99] J. Eder, E. Panagos, “Towards Distributed Workflow 
Process Management”, AT&T Research Labs,  1999. 

[GAH98] J. C. Grundy, M. D. Apperley, J. G. 
Hosking and W. B. Mugridge, “A decentralized 
architecture for software process modeling and enactment”, 
In IEEE Internet Computing, v 2 no 5, 1998, p 53-62. 

[GHS95] D. Georgakopoulos, H. Hornick, and A. Sheth, “An 
Overview of Workflow Management: from Process 
Modelling to Workflow Automation Infrastructure” 
Distributed and Parallel Databases , vol. 3, no. 2, 1995, 
p.119-153. 

[HHM00] G.Q. Huang, J. Huang, and K.L. Mak, 
“Agent-based workflow management in collaborative 
product development on the internet”, International 
Journal of Computer Aided Design , vol. 32, no. 2, 2000, 
pp. 133-144. 

[HK98] Hitomi A. S., Kammer P. J., Bolcer G. A., Taylor R. 
N., “Distributed Workflow using HTTP: Example using 
Software Pre-requirements”, Proceedings of the 
International Conference on Software Engineering, 1998. 

[KM99] B. Kötting, F. Maurer, “Approaching Software 
Support for Virtual Software Corporations”, Proceedings 
of the International Conference on Software Engineering 
ICSE ‘99, Los Angeles, California, 1999. 

[MDB00] F. Maurer, B. Dellen, F. Bendeck, S. 
Goldmann, H. Holz, B. Kötting, and M.Schaaf, “Merging 
Project Planning and Web-Enabled Dynamic Workflow for 
Software Development”, IEEE Internet Computing, vol. 4 
no.3, 2000, pp. 65-74. 

[RG02] P. Ritrovato and M. Gaeta, “Generalised Environment 
for Process Management in Co-operative Software”, 
Proceedings of the 1st  Workshop on Cooperative Supports 
for Distributed Software Engineering Processes , Oxford, 
UK, IEEE Computer Society Press, 2002. 

[RS99] F. Ranno and S. K. Shrivastava, “A Review of 
Distributed Workflow Management Systems”, 
Proceedings of the international joint conference on Work 
activities coordination and collaboration, San Francisco, 
California, United States, 1999. 

[WfM99] Workflow Management Coalition, 
“Workflow Management Coalition Interface 1: Process 
Definition Interchange Process Model”, Document no. 
WFMC-TC-1016-P, 1999, accessible from 
http://www.aiim.org/wfmc/standards/docs/if19910v11.pdf. 

 



 

Investigation of Repository Replication Models 
in Globally Distributed Configuration Management 

 
 

Kazuhiro Fujieda Koichiro Ochimizu 
Japan Advanced Institute of Science and Technology 
1-1 Asahidai, Tatsuhokuchi, Nomi, Ishikawa, Japan 

{fujieda,ochimizu}@jaist.ac.jp 
 
 

Abstract 
 

The repository replication often takes place in open 
source software development (OSSD) projects for 
distributed configuration management. Its style varies 
with each project. On investigation of these styles, we 
found tools or systems supporting them should have the 
following functions: partial replication, both of pull and 
push model in change propagation, and condensation of 
successive versions into one version. There is no tool or 
system satisfying these requirements. This paper shows 
the investigation, and then proposes a primitive tool to 
satisfy them. It grafts version trees between repositories. 
Developers can write scripts with it to automate or easily 
perform various styles of the repository replication. 
 
1. Introduction 
 

Open source software development (OSSD) projects 
are typical cases of global software development. Most of 
all such projects use CVS [1] for their software 
configuration management.  CVS allows developers to 
access its repository via the Internet. It doesn't provide 
file locking, so developers can check out the same part of 
the repository. They work on it separately, and resolve 
inconsistency in their work afterward. This style of 
development can decrease the cost of negotiation among 
developers separated globally. It has supported the rapid 
evolution of open source software. 

CVS, however, provides only a single repository 
model. It leads two problems. 1) It requires a server 
connected to the Internet with wide bandwidth and an 
organization maintaining it. 2) It coerces a single set of 
management policies of the repository. Such a set 
includes how to give the write permission to developers, 
how to commit changes to the repository, how to use 
branches, and so on. You can see the examples of such 
policies in [2][3][4]. The former problem can be solved 

by hosting services typical of SourceForge1; the latter 
problem can decrease concurrency of the work. 

Developers or teams in one project sometime need to 
advance their work to a considerable extent separately 
with the overall project. Although they need 
configuration management, they can't use the project's 
repository unless their work meets the management policy 
in the project. They often create full or partial replicas 
from the repository without the negotiation with the 
project’s manager(s) to moderate the policy.  They can 
work on the replicas inconsistently with the original 
although they may need to incorporate changes in the 
original sporadically. Afterward they propagate their own 
changes from their replicas to the original according to 
the policy. This style of development with replicas can 
augment concurrency of the development. 

The repository replication also takes place because of 
network bandwidth or server resources. CVS allows read-
only access to the repository by anonymous users. The 
server hosting it can have too heavy load to trouble 
developer's work. In this case, developers like to separate 
repositories from the read-only access with the replication. 
They also like to settle replicas in their local hosts when 
they have only sporadic or narrow connectivity to the 
server. 

Although the repository replication is important in 
OSSD projects, CVS doesn't support it at all. Developers 
create replicas by the supplementary tool named CVSup 
[5] or by hand. CVSup support only one-way mirror 
naturally, so it can't fully support the above style of 
development with replicas. There are two configuration 
management systems supporting the replication: 
BitKeeper [6] and ClearCase Multisite [7]. Each of them 
supports only one style of the repository replication. They 
can't necessarily support various styles of it in OSSD 
projects. 

In this paper, we first investigate some styles of the 
repository replication, and then discuss problems in the 
above two configuration management systems. Finally, 

                                                 
1 http://sourceforge.net/ 



we   will show our approach supporting various styles of 
it with a primitive tool grafting version trees between 
repositories for CVS. 
 
2. Replication Models in OSSD 
 
2.1. Basic Scenario 
 

We present the basic scenario of the replication and 
the change propagation taking place practically in OSSD 
projects using CVS. Figure 1 illustrates this scenario. 

1. Create a replica. 

A developer creates a replica from the project’s 
repository by hand or CVSup. He/she often creates it 
from part of files and/or part of versions in the 
original to save costs of network bandwidth and 
storage. 

2. Create a branch in the replica. 

Branches are traditionally used in version control 
systems to isolate changes from the main line of 
development. Although he/she works on the replica, 
a branch is necessary to easily incorporate changes 
from the original. 

3. Work on the branch. 

He/she adds his/her own changes to the branch in 
the replica. 

4. Pull changes from the original and merge them into 
the replica. 

He/she sporadically pulls changes from the original 
and adds them to the trunk in the replica.  CVSup 
can support this operation as long as the version 
number of the branch doesn't crash any branch in the 
original. He/she merges them into his or her branch 
afterward when occasion demands. 

It is hard to reproduce the version history in the 
replica by hand without CVSup. When he/she 
doesn’t or can’t use CVSup, he/she often adds one 
version including all changes in the history to the 
trunk. He/she takes such condensation of versions 
intentionally when he/she doesn't need intermediate 
changes between specific versions, for example, 
stable or snapshot releases. 

5. Push changes from the replica to the original. 

He/she negotiates with other members of the project 
about merging his/her changes into the original 
when occasion demands. If the negotiation 
succeeded, he/she adds one change condensed 

from his/her changes on the branch to the trunk in 
the original.  In most cases, there is no need to 
reproduce the branch in the original because such a 
branch rarely meets the management policy of the 
original. Even though he/she wants to do so, it is 
hard because CVSup can’t support this operation at 
all. There isn’t another tool supporting it. 

 
ClearCase MultiSite can't support this scenario at all. It 

performs automatic change propagation in the push model 
to keep consistency between the original and replicas. It 
can't help policy separation, but solve the problem about 
network resources. BitKeeper and CVS with CVSup can't 
support this style of replication. 

BitKeeper naturally performs this scenario. Any 
developer must create a replica when he/she intends to 
make any change in the repository. He/she doesn’t need 
to create a branch on the replica at the step 2. BitKeeper 
automatically creates a branch. It merges the trunk into it 
at the step 4. Additionally it makes version trees 
consistent between the replica and the original at the step 
5. 
 
2.2 Advanced Scenario 
 

BitKeeper can work on the above basic scenario. But it 
always replicates all files in a repository and synchronize 
all files between a replica and its original. So it can't 
support the following styles of repository replication in 
OSSD. 

When a development project uses outcome of another 
ongoing project, it is desirable its repository contains the 
full or partial replica of another repository. For example, 

Original

1.1

1.2

1.3

1.4

1.5

1.6

Replica

1.1

1.2

1.3

1.3.2.1

1.3.2.2

1.4

1.5

1.3.2.3

1.3.2.3

2.
3

1

4

5

Figure 1. Basic scenario of replication and 
change propagation 



Cygwin project 2  uses a part of outcome by Mingw 
project3. Its repository contains the partial replica of the 
repository of Mingw project (Figure 2). 

When a project depends on outcomes of multiple 
ongoing projects, its repository can be composed full or 
partial replica of the repositories of these projects. For 
example, KAME Project4 depends on FreeBSD, NetBSD 
and OpenBSD. Its repository contains partial replicas of 
the repositories of those projects (Figure 3). 
 
3. Our Approach 
 

On the above investigation, a tool or a configuration 
management system needs the following functions to 
cover various style of repository replication. 

• Partial replication in files and versions. 

• Both of push and pull models to propagate changes 
in both directions between a replica and its original. 

• Condensation of several changes into one change in 
the change propagation. 

We believe it isn't a proper solution to realize a 
configuration management system supporting all of the 
                                                 
2 http://www.cygwin.com/ 
3 http://www.migw.com/ 
4 http://www.kame.net/ 

above functions. Developers working on replicas need a 
specific style such as provided by BitKeeper and 
ClearCase MultiSite to handle them without confusion. 

Our approach is rather simple. We provide a 
supplement tool grafting version trees between 
repositories for CVS. It obtains whole or part of a version 
tree of a file from a repository, and condenses it on 
demand, and then grafts it on a version tree of an existing 
file or simply stores it in another repository. It records the 
information of grafting and grafted version trees. At the 
next time, it can graft growing part of the tree in the 
source repository onto the corresponding tree on the 
destination repository based on the record. This operation 
corresponds to the step 4 in the basic scenario. 

It can support not only basic scenario but also 
advanced scenarios. CVS supports some triggers to 
invoke other tools on specific timing. The combination of 
these triggers and our tool can realize the automatic 
propagation like ClearCase MultiSite. It is, however, only 
primitive to realize these scenarios. Developers have to 
write scripts with it to automate or easily perform them.  
 
Conclusion and Future Work 
 

OSSD projects need a tool supporting various styles of 
repository replication. We proposed a tool grafting 
version trees between repositories as a primitive to cover 
these styles. Now we are implementing it in the object-
oriented scripting language `Ruby'. We will provide the 
environment allowing developers to write their own style 
of replication with it in Ruby. 
 
References 
 
[1] K. Fogel. Open Source Development with CVS. 

CoriolisOpen Press, 1999. 
[2] The Apache Software Foundation. Apache project 

guidelines and voting rules. http://httpd.apache.org/dev/ 
guidelines.html, 2002. 

[3] The FreeBSD Documentation Project. Committer guide. 
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/ 
committers-guide/, Feb 2003. 

[4] The Mozilla Organization. Mozilla hacking in a nutshell. 
http://www.mozilla.org/hacking/, Feb 2003. 

[5] J. D. Polstra. CVSup: The CVS-optimized general-
purpose network file distribution system. http://www. 
cvsup.org/, 2002. 

[6] BitMover, Inc. BitKeeper - the scalable distributed 
software configuration  management system. www. 
bitkeeper.com, 2002. 

[7] Rational Software Corporation. Administrator's Guide for 
Rational ClearCase MultiSite, Oct 2001. 

Figure 2. An example of partial replica 

KAME Project

freebsdkame netbsd

FreeBSD

NetBSD

OpenBSD

openbsd

Cygwin Project

Mingw Project

utils testsuite w32apicygwin

utils msys runtimew32api

Figure 3. An example of multiple parents 



 
A Software Architecture for Knowledge Acquisition and Retrieval 

for Global Distributed Teams 
 
 

Amdreas Braun 
Accenture 

Maximilianstr. 35 
80539 München, Germany 

andreas.braun@accenture.com 

Allen H. Dutoit and Bernd Brügge 
 Technische Universität München 

 Institut für Informatik/ I1, Boltzmannst. 3 
 85748 Garching b. München, Germany 

 {dutoit, bruegge}@cs.tum.edu 
  

 
Abstract 

Communication and knowledge building are 
challenging in distributed contexts: participants do not 
all know each other and work at different times and 
locations; the number of participants and their 
organization change during the project; participants 
belong to different communities. Hence, to deal with the 
global market place, it is critical to provide teams with 
distributed collaboration skills and tool support. To 
improve the collaboration in global software development 
(GSD), we propose iBistro [2], an augmented, 
distributed, and ubiquitous communication space. iBistro 
aims to overcome problems resulting from 
miscommunications and information loss in informal or 
casual meetings. In this paper, we specifically focus on 
the technical architecture for iBistro, called the 
distributed concurrent blackboard architecture (DCBA). 
We developed and tested an experimental prototype of the 
DCBA between the National University of Singapore and 
Technische Universität München (TUM),Munich, 
Germany. 

 
1. Introduction 

Distributed projects leverage off tools, such as 
groupware, distributed repositories, and 
videoconferencing utilities, to accumulate and distribute 
knowledge and artifacts. Distributed projects, however, 
introduce many technical and social barriers. In addition 
to being geographically distributed, participants come 
from different corporate cultures, use different tools, 
follow conflicting standards, and often speak different 
languages. Such challenges are difficult to meet and often 
cause the failure of the project. 

Our goal in software engineering labs at Technische 
Universität München (TUM) and at Carnegie Mellon 
University (CMU) has been to provide a realistic software 
engineering experience to students. We have done this by 
immersing students in a single, team-based, system design 
project to build and deliver a complex software system for 

a real client. Since Fall 1997, we had the opportunity to 
teach distributed software engineering project courses in 
TUM and CMU [4]. Teams of students at CMU and TUM 
were taught to collaborate using groupware (e.g., web 
sites, Lotus Notes, Email) and configuration management 
systems (e.g., CVS) to design and build a system for a 
client. Client reviews and internal reviews were conducted 
using videoconferencing facilities, enabling each site to 
present its progress and obtain feedback from the client 
and from the other site. While all projects were completed 
successfully and students acquired a number of skills for 
dealing with distribution, we experienced many 
difficulties in the areas of communication and 
collaboration among the sites. In particular, participants at 
both sites spent much more effort during solving 
unexpected problems and interface mismatches than 
would have been the case in a single site setting. 
Distribution made the four following obstacles especially 
difficult:. 

 
Inability to find stakeholders quickly--- Since 

participants were distributed and did not know each other, 
finding the author of a piece of code or of a subsystem 
could take several days. Similarly, finding a project 
participant who had an area of expertise to help with a 
specific problem could likewise take several days. 

 
Inability to access knowledge--- Since many 

decisions taken by teams were taken during meetings or 
informal conversations, participants at the other site could 
not easily access the rationale of the system. Hence, 
participants encountered unexpected problems when 
enhancing or modifying components produced by the 
other site. While meetings were documented in meeting 
minutes that were available via the groupware, such 
records were organized chronologically and were difficult 
to search when looking for a specific problem. 

 



Inability to find artifacts quickly--- Even though 
participants used the same repository for tracking versions 
of their components, it was difficult to identify when new 
versions were checked in and which problems new 
versions addressed. Similarly, a site was usually not aware 
of whether a new version was under test and about to be 
released. Consequently, sites worked often on outdated 
versions and produced version conflicts by solving the 
same problems twice. 

 
Inability to build ``group memory''--- During the 

different stages of the lifecycle, many different and 
altering communication media, such as email, bboards, 
team web pages, databases, were used. People collaborate 
by communicating both formally and informally. Much of 
the information and knowledge, however, only resides 
only in the people's mind or somewhere unlinked in the 
databases or applications; the knowledge is lost for the 
organization or team. 

 
Note that all four problems noted above were caused, 

at least in part, by some type of communication 
breakdown. Researchers distinguish between informal and 
formal communication and recognize their application to 
different types of issues [8]. Formal communication is 
typically non-interactive and impersonal and includes, for 
example, formal specifications, written documentation, 
structured meetings. Informal communication is typically 
peer-oriented and interactive  and includes, for example, 
hallway conversations, lunch breaks, and informal 
conversations that follow formal meetings. While formal 
communication is useful for coordinating routine work, 
informal communication is needed in the face of 
uncertainty and unexpected problems. Note that all three 
problems noted above were caused, at least in part, by 
lack of informal communication, typical of distributed 
projects [6, 8, 1] 

In this paper, we describe the technical architecture for 
iBistro [2]. iBistro is an experimentation environment that 
allows distributed teams to capture, structure, and retrieve 
information and knowledge produced in global distributed 
software development projects. iBistro focuses on the 
integration of various sources of information, including 
informal meetings held in specifically equipped rooms. 
The technical architecture, the distributed concurrent 
blackboard architecture (DCBA) for iBistro has been 
implemented and evaluated during a distributed project at 
the National University of Singapore and TUM. 

This paper is structured as follows. Section 2 provides 
an overview of iBistro and details how iBistro can be used 
to capture, structure, and retrieve knowledge, and more 
generally, address problems such as finding stakeholders, 
accessing knowledge, finding artifacts, and building a 
group memory, as we identified above. Section 3 lists our 

results achieved so far and concludes this paper by 
outlining the outlook for iBistro. 

 
2. The iBistro System 

We start our overview of iBistro's architecture and 
design by recapitulating the specific characteristics of 
both (informal) meetings and software engineering to 
substantiate our design decision for the architectural 
pattern chosen. 

Software development is a problem-solving activity. In 
a software project, many different stakeholders contribute 
to the resolution with their individual knowledge of how 
to find a (partial) solution of (parts of) the problem. 
During the process of finding a resolution or partial 
solutions, stakeholders gather and contribute many 
different types of information. For instance, one single 
source file that builds a partial solution for the whole 
system is built using many different types of contributions, 
such as programming expertise, application domain 
knowledge, social skills, and many others. The final 
version of the artifact (the source file) eventually contains 
many, but not all, of the contributions made. These 
contributions, however, are often not used as contributed 
initially, but in some improved version. Further, the flow 
of events and contributions made is not predictable. Thus, 
finding a resolution is an opportunistic, as opposed to 
systematic, process. 

In other words, the process of building software is 
reminiscent of the process of building up a wall with little 
stones ``step-by-step''. It can be seen as knowledge 
assembly, in contrast to search for solutions. This view of 
the problem domain suggests a blackboard-based [17] 
approach. The blackboard model is originally used in 
opportunistic problem-solving to deal with non-
computable and diverse problems in AI. In this section, 
we introduce our modified blackboard which we call a 
distributed concurrent blackboard architecture. 

The DCBA is an approach to deal with the variety of 
events and context that occur during (informal) meetings. 
In our architecture, various capture components record 
contextual events (such as people entering or leaving the 
meeting room or tracking of electronic events), track 
discussions and bboard activity, as well as audio, video, 
and whiteboard content. Several specialized knowledge 
sources seize the captured events to create new types of 
information or knowledge, for instance a hypothesis (for 
instance argumentation or intermediate work products; not 
part of the deliverables) or a solution (e.g., artifacts that 
are part of the deliverables). This process of knowledge 
construction creates an abstraction hierarchy of 
knowledge that is stored in several layers of abstraction 
within the blackboard. Figure 1 displays the simplified 
overview of the iBistro system. 

 



Distributed Concurrent Blackboard Architecture (DCBA)

Meeting Capture
See Section 2.3    

LocationService
: MeetingCapture MeetingGenerator

: KnowledgeSource

GetVideo
: MeetingView

Knowledge Retrieval
See Section 2.5

Knowledge Acquisition
See Section 2.4    

Knowledge Representation
See Section 2.2Software Architecture

See Section 2.1

Singapore : RDBMSMunich : RDBMS

Munich : Blackboard Singapore : Blackboard

 
Figure 1: Overview of the iBistro System. 

 
The single distributed concurrent blackboard space is 

build up from local blackboard installations (e.g., 
``Munich'' and ``Singapore''). The distributed concurrent 
blackboard provides a transparent means for knowledge 
sources and users to access one single portal, regardless of 
its actual technical implementation. 

Figure 1 displays five fundamental concepts for 
iBistro. In the next sections, the design of iBistro and the 
usage of these concepts are detailed as described in the 
following overview. 

 
3. Software Architecture 

The distributed concurrent blackboard serves as a 
primary data repository. It is a virtual portal for all users 
and components which is made from many interconnected 
and local blackboards. Each local blackboard, however, 
provides transparent access for local tools to the complete 
knowledge base. Hence, tools do not need to know where 
the data are stored. In Figure 1 for example, blackboard 
systems at Munich and Singapore together form the global 
DCBA. 

Small data objects are completely replicated over time, 
enabling faster access and concurrent access. Larger data 
objects, such as video files or other artifacts, are not 
completely replicated but accessed directly in smaller 
chunks. This saves blackboard storage space and transfer 
time. The blackboard is concurrent in that several 
components can access the repository at the same time, 
either using read or write operations. This also implies 
that concurrent users or components likely will create 
several concurrent versions of a data item (see next 
section for more information on version control). 

 1..n

<<implements>>

<<implements>>

: DCBAConnector

<<extends>>

 * *

 *

 *

: View: DatabaseConnector : History: Capture

: Body : Precondition

: KnowledgeSource

: Strategy

: Control

: DataItem

: ConcreteLayer

: AbstractLayer

: LocalBlackboard

: SQLLayer

 
Figure 2: The DCB Architecture in Detail. 

 
Figure 2 shows a class diagram representing one single 

iBistro system. The following components relate to their 
corresponding principles in iBistro: The blackboard 
(including the layers and database) serves as a global 
data structure for knowledge representation and storage. 
Control and strategy components orchestrate the overall 
knowledge acquisition process by directing the knowledge 
sources (KS). The knowledge sources achieve the 
knowledge building process on a certain level of 
abstraction. The precondition of a KS implements a rule 
for the control component to decide whether to execute 
the body (the actual code) of the KS. Capture and view 
components access the repository without being directed 
by the control and simply write data items to the 
repository or read from out to present the information to 
the users. 

 
3.1. Knowledge Storage & Representation 

The blackboard is a global data structure and serves as 
a medium for all communication within the architecture. 
The blackboard can store any kind of information, called 
data item. However, the information stored is categorized 
into several levels of abstraction, which are stored in 
certain layers in the blackboard repository. The 
blackboard is designed flexible to allow for different 
representation schemes and organization of layers. For 
now, we assume that the blackboard contains three types 
of data items, represented in three layers accordingly: 

 
Layer n: Solutions and decisions. 
Layer n-1: Hypothesis and partial solutions. 
Layer 0: Context and raw data. 
 
The data items stored in the blackboard layers are 

incrementally modified and built as the blackboard 
operates. Data and knowledge stored in the knowledge 
space is recorded accordingly to a taxonomy of data 
items, hypothesis, and solutions. The hierarchy used is 
represented in the layers of the blackboard model. Basic 
types of information (data items) are stored at lower levels 
of the blackboard, while higher-level information 



(hypothesis, solutions) are stored at higher-levels. Such 
partitions are necessary to maintain the organization of 
distributed domain knowledge, which is represented in the 
collection of knowledge sources. The structure of the 
levels is also necessary to control the data on the 
blackboard and to organize the levels of hypotheses. 

The layers represent the concept of knowledge 
acquisition: data is transformed to information, which is 
transformed to knowledge. The layers also represent the 
search for solutions, as explored alternatives, regardless of 
their later use in a solution, are considered as an important 
contribution and called hypothesis. All possible 
hypothesis and solutions that might be derived from a 
given set of data items in layer 0 are called the solution 
space. For an iBistro meeting, the solution space would 
consist of all possible interpretations of a meeting between 
a certain set of individuals. However, many of these 
potential solutions are not found by the system. Instead of 
that, the system might identify a subset of the solution 
space. 

The elements of each layer of the blackboard are 
composed of elements of the layer below or from the same 
layer. For instance, layer 0 might contain a bitmap of a 
whiteboard snapshot depicting the topic and agenda of a 
meeting. A specific knowledge source, such as an OCR 
component, then might be used to interpret the bitmap and 
create a machine-readable object, such as a text-object. 
The resulting object typically is stored within the same or 
one level higher layer than the source object (bottom-up 
analysis), or vice-versa (elements at lower layers are 
created from higher-level objects, top-down analysis). In 
top-down analysis, for instance, a changed line in the 
source code could be linked back to the related position in 
the source inspection meeting video. 

In addition to the organization in layers and in contrast 
to existing blackboard systems, all data items also may 
exist in several versions. Similar to version control in 
software development, two knowledge sources may create 
two concurrent successors of a data item. Each of them 
later can be reconsidered or dropped independently. 
 
3.2. Information and Meeting Capture 

Capture components simply capture a particular type of 
contextual information in a meeting or electronic 
communication, for instance sensor-based data. This 
information is then offered to the system, independent of 
its potential use. Specific capture components can be 
implemented for various types of context, such as people 
entering or leaving the meeting room (location-based), 
people using specific equipment in the electronic meeting 
room, such as the electronic whiteboard (activity-based), 
or access to project-relevant artifacts, such as source-code 
from a workstation, or many others. All capture 
components have in common that they track information 

that can be electronically recorded. The resulting 
information is stored as a data item at a low level of 
abstraction. The video capture component, for instance, 
simply records audio and video of a meeting and puts the 
resulting video-stream (as an artifact) to the knowledge 
space. 

 
3.3. Knowledge Acquisition 

Knowledge sources, pick up basic data items and work 
on them, potentially by using and combining the 
information captured by several different meeting capture 
components. A knowledge source is responsible for 
knowledge acquisition at a certain level of abstraction. 
Knowledge sources closely conform to the related concept 
introduced with generic blackboard architectures. Most of 
the rules introduced there do apply in the DCBA as well: 
knowledge sources exclusively work with information 
stored on the DCBA. They are only able to communicate 
with other knowledge sources using the DCBA. A 
knowledge source typically works on information from a 
specific layer and rises the information to the next level 
higher. 

 

Con
ce

pt
? 

: Q
ue

sti
on

Snapshot: Artifact

Snapshot: Artifact

Time

Level of Maturity/
Abstraction Layer

Ver
sio

n/
 H

ist
or

y

[.........]
Level 0

Level 1

Level n

[.........]

Adv
iso

r?
 : 

Opt
ion

Cat
alo

g?
 : 

Opt
ion

: D
ec

isi
on

: D
ec

isi
on

.2

New Version of 
Decision.1, 
potentially created 
in another meeting.

 
Figure 3: Stored Knowledge as a 3D-model 

 
In meetings in iBistro, the MINUTEGENERATOR is a 

specific knowledge source to work on the diverse 
information created during a informal meeting, including 
the recorded video stream, and to create linkage of 
knowledge with external data items (e.g., knowledge from 
other meetings or data items in general). The tool is used 
exclusively by a dedicated meeting champion after the 
meeting. The MINUTEGENERATOR implicitly creates 
indices which are used by the user to navigate through the 
knowledge space. Knowledge is linked accordingly to its 
logic cohesion and by version. By logic cohesion we 
understand that, for instance, a question rised by one 
person is logically linked to that originator; later answers 
to the question are also interlinked with the question. 
Alternate versions of the question, for instance rephrased 
or more precise versions of the questions, are linked as a 
new version to the initial question. This builds up a 
complex network of knowledge, dependencies, and 
versions. 



After the post-mortem process, the hierarchy of 
information and knowledge now stored in the meeting 
minutes can be translated to a three-dimensional model as 
shown in Figure 3. The three axes represent the timeline 
(x-axis), level of abstraction (represented in the 
blackboard layer, y-axis), and version or knowledge-
interlinkage (z-axis). 

 
3.4. Knowledge Retrieval and Navigation 

Knowledge views provide access to the contents and 
structure of the knowledge space. Similar to the model-
view-controller paradigm [5], a variety of knowledge 
views provides different visualizations of the state of the 
knowledge space. Knowledge views are used in particular 
to provide a human-computer-interface (HCI) to the 
information and knowledge stored in the DCBA. 

The meeting minutes stored in the repository represent 
the natural flow of the meeting, including external 
artifacts, events, or annotations from other sites or an 
individual's personal computer. A self-evident way to 
view such a meeting is to playback the meeting as a 
multimedia archive, thus enabling non-participants to 
access the raw data. In iBistro, the SMIL 
MEETINGVIEWER generates on-demand a SMIL1 [9] file 
(or data stream) to represent the meeting along with the 
captured requirements, context, argumentation, and so on. 
This allows interested people to navigate through a 
meeting using any SMIL compliant video player, such as 
RealPlayer™  or Quicktime™ to view the meeting. As the 
content of the meeting follows a common timeline, the 
“Clip Position” slider is used to navigate through the 
captured audio, video, as well as other content such as 
requirements. Alternatively, the history events can be used 
to jump to specific segments of the meeting minutes, for 
example, navigating an option will move the position 
slider to the frame where the option was first suggested. 
Graphical views of requirements or rationale can be 
displayed using HTML or by generating bitmaps on 
demand.  

Displaying the multi-dimensional structure of 
knowledge, such as context-links between stored entries 
which allow navigation, is non-trivial. Thus, a specific 
3D-meeting view facilitates the n-dimensional navigation 
through the captured knowledge from various sites. As 
knowledge in iBistro is stored along with its related 
contextual information, navigation is possible using 
various types of input. The minutes consist of contextual 
information (e.g., location, identity, activity, history, and 
time) which can serve as keys for searching. For example, 

                                                 
1 SMIL™ enables simple authoring of multimedia 
presentations over the Web. A SMIL presentation can be 
composed of streaming audio, streaming video, images, 
text or any other media type. 

a minute may be sorted by requirements authored by a 
certain participant, by time, or any other key. Navigation 
is possible on any of those keys: the stakeholder of an 
issue is found by clicking on that issue. Related 
information, like time or location where the meeting took 
place, is displayed accordingly and might be used for 
further navigation. Thus, iBistro's database can be used to 
find stakeholders over various meetings or even projects. 
While a MEETINGVIEW provides a meeting-based index 
into the knowledge base, other knowledge sources can 
provide an artifact-based view into the knowledge base. 

 
4. Status and Conclusion 

The iBistro DCBA has been developed and evaluated 
in a distributed setting between the National University of 
Singapore and TUM. This setup revealed some technical 
difficulties and deficiencies, especially regarding ``live'' 
audio and video quality due to limited bandwidth and 
camera orientation problems. This shows the importance 
of local post-meeting processing and information 
structuring, as communication then is based on the 
electronic meeting minutes. The distributed setup also 
showed the strengths of iBistro compared to simpler 
electronic communication (such as email). 

The DCBA builds a rich group memory by integrating 
artifacts and surrounding information and knowledge 
(rationale, stakeholders, …) information into a common 
knowledge space. This allows participants to: 

 
1. Find stakeholders by looking at related efforts, 

discussions, or material. 
2. Access knowledge by browsing the linked structure 

of the knowledge space. 
3. Find artifacts quickly by issue, stakeholder, topics, 

location, or any other node in the knowledge 
space. 

4. Understand and learn from the history of the 
ongoing project or former projects by seeing 
rationale entries, which include argumentation, 
alternatives, and decisions. 

 
In this paper, we motivated the need to integrate 

various sources of information and knowledge, including 
informal communication, in GSD. We illustrate how a 
group memory is build from various knowledge sources. 
We propose to address some of the issues surrounding 
informal communication by supporting the efficient 
capture, structure, and navigation of meeting minutes and 
their integration into the long term project memory 
embedded in tools and documents. We described the 
distributed concurrent blackboard architecture as a 
connecting technical architecture to achieve these goals. 
We finally introduce our experimental environment used 
and conclude by presenting our current status. 



 
10. References 
[1] A. Al-Rawas and S. Easterbrook. Communication problems 
in requirements engineering: A field study. In Proc. 
First Westminster Conf. Professional Awareness in Software 
Engineering, Univ. Westminster, London, 1996. 
[2] A. Braun, B. Bruegge, and A. H. Dutoit. Supporting 
informal requirements meetings. In 7th International 
Workshop on Requirements Engineering: Foundation for 
Software Quality. (REFSQ’2001), volume 7, Interlaken, 
Switzerland, June 2001. 
[3] A. Braun, B. Bruegge, A. H. Dutoit, T. Reicher, and G. 
Klinker. Experimentation in context-aware applications. 
Submitted to HCI Journal for publication in special issue on 
context-aware computing, 2000. 
[4] B. Bruegge, A. H. Dutoit, R. Kobylinski, and G. Teubner. 
Transatlantic project courses in a university environment. In 7th 

Asia-Pacific Software Engineering Conference, Singapore, Dec. 
2000. APSEC. 
[5] S. Burbeck. Application programming in Smalltalk-80: How 
to use Model-View-Controller (MVC), 1987. [6] B. Curtis, H. 
Krasner, and N. Iscoe. A field study of the software design 
process for large systems. In Communications of the ACM, 
volume 31(11), Nov. 1988. 
[7] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy. 
The hearsay-ii speech-understanding system: Integrating 
knowledge to resolve uncertainty. In ACM Computing Surveys, 
volume 12 (2), pages 213---253, 1980. 
[8] R. Kraut and L. Streeter. Coordination in software 
development. In Communications of the ACM, volume 38(3), 
Mar. 1995. 
[9] W3C. SMIL. Technical report,WorldWideWeb Consortium, 
1998. 

 
 



Supporting an Explicit Organizational Model in Global Software Engineering 
Projects 

 
Oliver Creighton, Allen H. Dutoit, Bernd Brügge 

Technische Universität München 
{creighto,dutoit,bruegge}@cs.tum.edu 

  
 

 
Abstract 

 
In this paper, we propose the integration of 
relevant support tools for a global software 
development project based on a shared 
organizational model.  By providing a single 
directory service where consistency and 
accuracy of this model can be better controlled, 
we intend to achieve several benefits.  In 
particular, the ability to automate some of the 
tasks associated with initiating a distributed 
software project, thereby reducing the latency 
between the setup phase and the development 
phase. 
 
1.  Introduction 
 

A software engineering project requires several 
different tools at the same time:  communication 
tools, like email clients or web-based bulletin boards, 
workflow applications for process enactment, and 
traditional CASE tools such as integrated 
development environments. Many depend on a model 
of the project organization. The simplest form has 
been traditionally to store user names and passwords, 
a more complicated form, which also supports 
workflows, includes notions of teams, roles, and 
resources. The tools have their own scheme to store 
the models, as a consequence much of the 
organizational information is duplicated across tools 
and development sites. This leads to problems of 
inaccuracy, redundancy, and incompleteness.  In the 
past these were accepted by developers in local 
environments, as they could be resolved through 
informal communication. 

The problems, however, have become harder in a 
distributed environment:  If the organization is best-
effort driven, as e.g.  many open source projects are, 
change occurs frequently and spontaneously, making 
one person the key contact for an entire system, 
where most subsystems might still state a previous 
person as the contact.  Updating this information in 

all associated tools across potentially several 
development sites quickly becomes too much of an 
effort for any organization, the frequent solution is 
therefore to simply not store this information 
explicitly in the first place.  In general, distributed 
organizations suffer from reduced informal 
communication, which in turn results in the need to 
make implicit organizational knowledge 
explicit [2,5]. Ideally, the information about the 
organization (e.g., “Who is programmer, tester, or 
maintainer for what? ”) is made explicit for every 
artifact in every tool, especially in a globally 
distributed project. 

The key issue that we address in this paper is how 
to minimize redundancy in the organizational 
knowledge stored across tools in order to minimize 
inconsistencies.  If more knowledge about the 
organization is made explicit and shared among many 
tools, the value of this knowledge increases 
dramatically.  Moreover, if all project participants can 
update the part of this knowledge that is relevant to 
them, the chance that this knowledge is up-to-date 
increases accordingly.  Hence, we propose a central 
project directory service supporting the authentication 
of users, the storage of user-specific attributes (e.g., 
email address, web home page), team compositions, 
roles, and access control lists.  This project directory 
can be conveniently accessed by any tool in the 
project for storing and retrieving organizational 
knowledge, across sites, tools, and users. 
We identify four main properties that such integration 
efforts should expose:  Solutions should be 
open:  Several entry levels of abstraction (from basic 
access protocols such as LDAP or HTTP to higher 
levels of abstraction such as a Java API) should be 
provided. 
encapsulated:  All integrated components (the tools 
and infrastructure extensions) should be exchangable 
by using standardized interfaces and protocols. 
secure:  Distribution of personal data should be 
definable by users, following the informational self-
determination principle (making it necessary to use 
encryption for network communication and possibly 
storage). 



scalable:  A single directory service should be 
distributed across server clusters or even globally.  
The unity needs only to exist for data integrity, but 
response times and firewall issues need to be 
considered.  Adding new tools and new sites should 
be easy, so a single directory hosted on a single 
server is not an acceptable solution.   

Such a solution has several benefits.  Take for 
example the startup phase of new projects in a 
project-based organization.  When a large number of 
new hires are assigned to a newly initiated project, 
the project setup also faces social barriers as informal 
communication requires team-building and a relaxed 
atmosphere for getting to know each other.  We 
compare such highly condensed project start-ups to a 
big-bang, where suddenly a large mass of active 
elements are introduced in a formerly empty 
environment.  The formation of a clear structure on 
these elements is key to good collaboration. It is 
common practice to begin projects with some ice-
breaking activities that will help participants 
memorize their names or get a feel for background 
and interests of each other.  But in the case of global 
software development, this is sometimes impossible 
to organize, as sending all developers to meet 
everyone else is too expensive. 

As the various support tools need to be installed 
and configured, projects usually begin with a 
preparation phase where a small group of project 
initiators try to generate as much of the anticipated 
required structure as possible.  This task is typically 
on-going during the entire project duration, as 
changes in organization frequently also lead to 
changed requirements for the support infrastructure. 

As mentioned, almost all tools that aid in 
software engineering contain some form of user 
management for access control, contact information, 
or representing the roles that various project members 
have in the project.  By unifying some of the required 
installation steps through tool integration, we expect 
to shorten the setup phase and begin the development 
phase of projects earlier. 
 

2.  Single Directory Service based on an 
Organizational Model 
 
The typical use of a centralized directory service in 
organizations is to provide a phonebook (the “White 
Pages” of the organization) containing basic contact 
information for every employee.  While this is a 
useful and important service in itself, when it comes 
to supporting CASE tools in a broad sense, the 
standard idea of an alphabetical list of people is not 
sufficient. Providing information about the properties 

of each employee, in an organized fashion that makes 
it straightforward to look for related work areas, 
would be another use (the “Yellow Pages” of the 
organization). 

But even if a central directory service for these 
purposes is installed, and is provided by standard 
access mechanisms such as LDAP, the benefit is not 
yet reaching the CASE tools directly.  To provide 
integrated user and resource management, it is 
necessary to first make the organizational model 
explicit and then to share it across tools and sites for 
the consistency reasons explained before. 

The basis of our directory is the following object 
model, which we believe can express all 
organizational models we encounter in the various 
project courses that we test our tools in (cf.  
section 3.):  

 
In short, human resources can be grouped in arbitrary 
depth, and the associations have attributes to support 
changes in the organizational structure over time.  
Projects are represented as the sum of all resources 
they contain, and on the abstract level of Resource, 
the basic functionality for authorization is integrated 
by associating it with one group as its Access Control 
List (ACL). The exact access role is represented by 
the role attribute in the Membership class, which 
states, for example in the directory itself, roles like 
“Administrator”, “Author”, or “Reader”. But since 
this attribute is interpreted by the individual 
applications, it can be extended with other roles as 
they require. 

With this model, the directory service is 
predestined to provide a service for authentication, to 
verify the identity of users, as it then can be assured 
that if applications want to control access to specific 
entity objects they control, and they are concrete 
subclasses of Resource in our model, the directory 
service can provide verification of access 
(authorization) for users. 

Consider the following example, illustrated by an 
instance diagram of the directory object model:  



 
The NetworkSubsystem, a ConcreteResource 
controlled and modified by different tools (such as a 
version control system for the source code and a 
workflow support tool for quality assurance 
scheduling) is associated with the NetworkTeam. 
This Group is interpreted as the ACL for the 
resource, which causes that the role attribute in the 
Membership association objects specifies the access 
rights of the contained HumanResources, in our 
case the two groups NetworkDevelopers and 
NetworkQA. Our example shows how one would 
model a source code promotion strategy, where after 
the code freeze deadline of February 15th, developers 
can no longer modify the subsystem, as it has been 
handed over to the quality assurance (QA) group for 
testing.  The QA group’s deadline for testing is in our 
example March 1st, after which developers are again 
allowed to modify the subsystem, but the QA people 
have no access until the next cycle, starting April 
15th. 

For the entire duration of the project, developers 
are allowed to read source code; note that 
Membership objects can exist multiple times for the 
same time span and HumanResource combination, 
only varying in role. The Membership objects 
between the Groups and Persons that we omitted in 
the instance diagram could be used for temporarily 
assigning more people to the testing group, but the 
role attribute will be insignificant for the 
NetworkSubsystem as only the NetworkTeam 
group is interpreted as its ACL. In other words, the 
containment relation is transitive, whereas the is-
ACL-for relation is not.   

By storing this information in a single directory 
and providing mechanisms for modifying it, while 
retaining a consistent access restriction as to who is 
allowed to, it becomes possible to integrate 
functionality in the workflow tool for project 
management to delay the date of code promotion to 
QA stage, and automatically assure that developers 
will continue being able to modify the source code 

without changing anything in the version control 
system. 
 

3.  Evaluation Environment 
 
In researching distributed software engineering, we 
have taken the approach of “learning-by-doing.” We 
have taught several global software engineering 
(GlobalSE) project courses in which teams of students 
located in Pittsburgh, PA and in Munich, Germany 
collaborated on developing a system for a single 
industrial client [1,3]. We follow a sawtooth process 
in which developers present a sequence of 
incrementally more refined prototypes to the client 
and to project management, so that the scope and the 
direction of the project can be refined at regular 
intervals. 

Distributed reviews are done using a combination 
of video conferencing, phone, application sharing 
environments, shared slides, and the web.  The 
infrastructure also included asynchronous tools such 
as Lotus Notes bulletin boards, CVS for version 
control, a UML modeling tool, and an integrated 
development environment.  More recently, we have 
also introduced a requirements management tool [4], 
an awareness infrastructure [6], and a workflow tool 
for process enactment.  As most tools do not share the 
same user information, developers need a user name 
and password for each tool.  Moreover, while the 
infrastructure available to students includes the same 
set of tools in both sites, these tools are usually 
administered locally, resulting in duplication of user 
and project organization information, as described in 
the introduction.  Worse, not all knowledge for 
administrating this information is available in any one 
site, resulting in inconsistencies and information that 
is out of date (e.g., users who left the project, teams 
whose name and purpose changed). To address these 
issues and to evaluate the value of a single project 
directory approach, we have been adapting the project 
infrastructure so that it uses the directory described in 
the previous section.  In particular, the following 
aspects of the environment are being revised:  

User authentication. The most immediate 
benefit of the single directory is that users have a 
single account across all tools in the infrastructure.  If 
they change their password, the new password will 
take into effect immediately.  As the directory is 
shared across sites, users also have a single account 
across all sites.  Similarly, all attributes associated 
with users, such as email addresses used for notifying 
developers, are stored only once. 

Directory user interface. We implemented the 
directory in our Lotus Notes infrastructure.  As a 
consequence, users can update their directory entries 



as before, by editing their record in the Lotus Notes 
address book.  As every user has write access to their 
own data, the attributes associated with each users are 
kept up to date more often. 

Team structure. The team membership of each 
user is represented in the directory as groups, which 
are also resources associated with each project.  As 
developers change teams and often take part in more 
than one projects, this enables us to track team 
membership over time, when assessing a developer’s 
skills.  From the infrastructure stand point, this also 
enables tools to leverage off the team organization.  
For example, the workflow tool we use allows tasks 
to be assigned to a team or to an individual.  When 
the task responsibility changes, an email notice is sent 
both to the participants who are responsible and to 
those who were responsible for the task.  The 
workflow tool retrieves the list of team members 
from the directory.  As other tools which provide 
group notifications (e.g., Lotus Notes) also retrieve 
the same information, the actions of these different 
tools are consistent.  Moreover, this encourages 
participants to keep this information up-to-date. 

Role and access control. The Group and 
Membership classes in the directory enable us to 
represent role information.  By using a Group as an 
access control list, each tool can offer a different 
behavior depending on the role of the user.  For 
example, the workflow tool only allows users with a 
manager role to change the process model.  Users 
with a coach role can change the responsibility of 
each task.  We are currently modifying other tools to 
take advantage of this information.  For example, in 
our requirements tool, only analysts would be able to 
modify the requirements while both analysts and 
reviewers would be able to annotate the requirements 
with questions. 

We plan to complete these changes and evaluate 
the single directory concept by our next distributed 
project course, which will take place during the 
summer between Munich, Germany and Otago, New 
Zealand. 
 

4.  Conclusion 
 
In this paper we propose a technology-driven 
approach, as opposed to a business administration-
driven approach, for enabling software engineers to 
build better software through rationale capture and 
knowledge management. 

Key challenges in project organization include 
identifying incentives for developers to accept the 
tools the organization wants to employ and 
addressing individuality and privacy concerns. 

When identifying potential incentives, we note 
that lack of sharing of information among sites leads 
to adverserial relationships and lack of trust.  We 
anticipate that sites can benefit from the system by 
offering a greater transparency into their activities.  
Such transparency can then lead, for example, to 
certification frameworks for supplier sites and 
reinforce long term relationships among sites. 

When addressing privacy concerns, we propose 
that providing a unified storage and access control 
model that is powerful enough to individually set the 
data distribution scope while at the same time, 
through unification, being simple enough to allow 
every individual to determine the scope themselves, 
we can offer enough flexibility for people to trust a 
centralized storage of their personal information. 

In general, the above issues are difficult to predict 
and anticipate, as they relate to complex 
organizational and human processes.  Only an 
experimental approach will enable us to assess the 
impact of the system with respect of these issues and 
design solutions to address them. 

We intend to continue our approach to first 
integrate the organizational model across tool 
boundaries with integrating entity objects that CASE 
tools work with by identifying common data 
structures that could then also be shared in a similar 
fashion.  The description of our underlying meta-
model encompassing not only the GlobalSE 
organizational models, but also the system models 
and rationale models is out of scope for this paper and 
can be found in Kobylinski et al.[6]. 

 
References 
[1]  B. Bruegge, A. H. Dutoit, R. Kobylinski, and 

G. Teubner. Transatlantic project courses in a 
university environment. In Asian Pacific Software 
Engineering Conference, Dec.  2000. 

[2]  B. Curtis, H. Krasner, and N. Iscoe. A field study of 
the software design process for large systems. 
Communications of the ACM, 31(11), Nov.  1988. 

[3]  A. H. Dutoit, J. Johnstone, and B. Bruegge. 
Knowledge scouts:  Reducing communication 
barriers in a distributed software development 
project. In Asian Pacific Software Engineering 
Conference, Dec.  2001. 

[4]  A. H. Dutoit and B. Paech. Rationale-based use case 
specification. Requirements Engineering Journal, 
2002. 

[5]  R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The 
geography of coordination:  Dealing with distance in 
R&D work. ACM, 1999. 

[6]  R. Kobylinski, O. Creighton, A. H. Dutoit, and 
B. Bruegge. Building awareness in distributed 
software enginering:  Using issues as context. In 
International Workshop on Distributed Software 
Development, International Conference on Software 
Engineering, May 2002. 



D-Meeting: an Object-Oriented Framework for Supporting
Distributed Modeling of Software   

Naoufel Boulila, Allen H. Dutoit, Bernd Brügge
Technische Universität München, Applied software engineering Chair,

{boulila, dutoit, bruegge}@in.tum.de

Abstract

The distributed development of software is increasingly
common, driven by the globalization of companies and
business and enabled by the improvements in
communication and computing.

The distributed development of software introduces
new aspects of cooperative work in which a greater
emphasis is placed upon technological support of the
software development process. Tools to support
distributed collaboration are at present limited to
general-purpose groupware involving video, audio, chat,
shared whiteboards and shared workspaces. However, we
are not aware of any group support framework
specialized for distributed software engineering.

In this paper we focus on the development, evaluation,
and refinement of the D-Meeting framework for
supporting synchronous collaboration among distributed
groups of developers.

A prototype called D-UML groupware supports
distributed software-modeling meetings by enabling real-
time sharing and manipulation of information, the
capture and management of rationale knowledge, in
which different groups have access to different terminals
(e.g., live board, desktop machine, handheld,
interconnected over fixed or wireless local area
networks). D-UML shows a potential enhancement for
supporting distributed meetings.

Keywords: Framework, Distributed Collaboration,
Global Software Engineering, CSCW, UML, and
Rationale

1. Introduction

Software development performed by traditional co-
located teams is essentially a difficult task. The complex
nature of the activities being carried out requires strong
coordination, collaboration, and communication among
developers through numerous meetings. Meetings play
typically a critical role in collaboration, as it is much
easier to build consensus and reach compromises in face-
to-face situations. Moreover, large amount of implicit

knowledge is exchanged during negotiation and conflicts
resolution.

In a distributed context, where developers are dispersed
across different sites and even countries, several problems
arise due to the physical, social, and cultural barriers [1].
Coordination of the activities is much more difficult,
informal communication among team member cannot
happen, and a lot of knowledge is lost due to
misunderstandings. Consequently, meetings become
difficult, rare, and expensive, as participants have to
schedule these meetings and travel. Hence, efforts in
supporting distributed development should focus on better
supporting distributed meetings.

Previous efforts to develop distributed groupware
applications that are interoperable across diverse
environments, both research prototypes and products, have
encountered difficulties and significant cost [2].

This paper is structured as follows. Section 2 describes
a general model of the software engineering meeting
activities. Section 3 discusses the issues and challenges in
distributed collaborative development. Section 4
introduces the D-Meeting framework. Section 5 describes
D-UML, an instance implementation of the framework.
Section 6 concludes with future research direction.

2. Meeting activities

Software development activities require strong team
collaboration and cooperation. Much of this collaboration
occurs during meetings, where designers discuss, argue,
negotiate, and reach decisions via compromise and
consensus. These meetings represent critical points in the
project when knowledge is created, conflicts are identified
and resolved and social networks are formed. Figure 1
shows the different software development activities.



Figure 1: Meeting Activities
 

2.1. Brainstorming

The early stages of modelling require brainstorming and
idea exploration. During this activity, team members
explore a wide range of solutions using informal drawings
and sketches.

2.2. Modeling

Once team members have explored a sufficient number
of ideas, they detail a small number of promising ones.
This is usually done with formal artiefacts, e.g. UML
diagrams. However, the discussions surrounding the
architectural diagrams are often non-linear and sometimes
chaotic. Since this is a communication-intensive activity,
everyone attempts to talk at the same time. In distributed
settings, floor control is the main issue that participants
will encounter during these tasks. Moreover, during the
modeling activity, team members discuss several options
and suggest different design views for each option.

2.3. Conflict identification and resolution

During modeling, participants raise several issues in the
form of questions and propose options with different
argumentations. Resolution of these issues is done after
the evaluation of the pro and cons with respect to criteria.
Due to different opinions, conflicts are often raised and
need to be addressed. Therefore, structuring issues and the
different options and criteria enables team members to
quickly identify the source of the conflict and focus on
new options to address them. Hence using techniques to
capture and maintain rationale can be used to support this
negotiation [3].

2.4. Consolidation

At the end of a meeting or after the meeting, team
members review their decisions, examine open issues and
eventually close them. Finally, this activity ends up with

restructuring and documenting the meeting for the
following modelling session.

3. Issues in distributed collaborative
development

In distributed settings, supporting the collaboration of
different individuals and teams over distance and time
becomes a increasingly challenging issue.
Many CSCW researchers have investigated the issues
associated with collaborative work. Baecker [4] provides
several requirements for collaborative writing systems.
Nunamaker [5] presents research in developing and using
same-time/ same-place and same-time/different-place
electronic meeting systems technology; Greenberg [6]
describes the issues and experiences in designing and
implementing group drawing tools, and Olson [7, 8]
presents details of how real groups of expert designers
engage in the early stage of software design meetings,
Damian [9,10] presents initial studies in investigating
groupware support for the interaction in Requirement
Engineering processes.  
We address the following issues and challenges in
building the D-Meeting framework:

Informal/formal communication: knowledge is
constructed through group communication and
conversation. Communication is a social activity and
takes different forms, formal and informal. During
brainstorming, a substantial amount of informal
knowledge is produced, while during consolidation
activity, the generated knowledge is formalized.

Knowledge capture and management: meetings
produce a substantial amount of discussion, arguments,
and rationale knowledge. The outcome of the meeting,
i.e., the knowledge embedded in conversations, should be
reusable, organized, and shared within the workgroup to
ensure that all participants are working in the same
context. In particular, design rationale and its concepts,
methods, and techniques will be addressed by the D-
Meeting framework.

Awareness: people need to know who else is present at
the meeting to guide their work. Peripheral awareness
(low-level monitoring of others’ activities) is pivotal
factor in collaborative work [11]. The tradeoffs inherent in
awareness versus privacy and in awareness versus
interrupting others will be addressed.

Inflexible floor control policies: in a meeting, there are
potential problems if several participants decide to access
the same artifact and to manipulate it at the same time, so
different systems adopt different floor control policies to
determine which participant can take control of an artifact
at any time. Most of applied policies are likely to cause
the frustration of the users and leads to misuse or to
abandon of the system. D-Meeting addresses this issue by
providing several control policies.

Brainstormin
g Modeling

Consolidation Conflict
Management

Sketches

UML+Sketch
esAssessment

Options +Criteria



Heterogeneity: in distributed environments, it is rarely
the case that all participants share the same computing
environment. A collaborative groupware must be flexible
enough to span a variety of devices, from small handhelds
to live-board systems.

4. D-Meeting Framework architecture

The key idea behind the D-Meeting framework is that,
all the components building a meeting, i.e., Floor
Control, Awareness, Design Rationale and the standard
meeting activities, are formally modelled as software
components that could be used as pluggable strategies
(Figure 2).  

4.1. D-Meeting framework components

Meeting: is the core engine of the framework, built as a
mediator class that defines an interface for communicating
with the Meet ingComponent . Built as black box
component that could be subclassed. The reuse of D-
Meeting however, is done through composition and
delegation more than inheritance. This class implements a
cooperative behavior by coordinating the elements of a
meeting.  

 MeetingComponent: represents a generic component
that makes up a meeting. It communicates with the
Meeting object whenever an event of interest occurs. By
subclassing and overriding its behavior, new components
could be added to the system without changing the
behavior of the Meeting component.

Awareness: is an essential component in the D-Meeting
framework, as it is always required to coordinate group
activities. This component cooperates closely with the
Floor Control component. A default implementation is
provided.

Modeling: supports the creation and manipulation of
informal structures such as free-hand diagramming and
textual annotations to communicate, as well as formal
artifacts such as UML models.  

Floor control: Default behavior is provided which
consist in allowing users to manipulate objects without
any kind of locking relying only on socially accepted
practices to ensure consistency.

Design Rationale: this component addresses an
important issue such as linking the design rationale to the
concrete and visible artifacts through embedding
communication and history in the design process. This
enables developers to collaboratively build a UML
diagram and attach additional knowledge to the diagram.
Techniques like QOC [12] are intensively used to support
knowledge management activity.

Figure 2: D-Meeting Architecture

In designing D-Meeting, we considered the flexibility of
extending it with new components or behavior without
breaking its structure. The Meeting class localizes
behaviour that otherwise would be distributed among the
concrete MeetingComponent subclasses. This enforces
decoupling of the different components, in that the
Meeting class as well as MeetingComponent class can vary
independently.

4.2. D-Meeting Components Collaboration

The D-Meeting framework provides default behavior
that can be used for experimentation with. Every
component subclassing the  MeetingComponent,
implements a RemoteObservable interface and the Meeting
class implements a RemoteObserver interface to support
distributed real-time meetings. Whenever a component
changes state (after a remote user initiates an action, such
as adding an object, marking it, scribbling etc), it sends a
notification to the Meeting object, which responds by
propagating the effect of change to the concerned
MeetingComponents(Figure 2,3).  

Figure 3: Distributed Architecture



A typical scenario deployment is that small group-work
members are physically dispersed in different places and
working around a common task to build an architectural
design.

5. D-UML: an instance of the D-Meeting
framework

D-UML (Distributed UML) is a Java implementation of
the D-Meeting framework, based on a Distributed MVC
pattern (Figure 3). The Model resides in the Meeting
object, and can be shared across a number of views
composing the D-UML groupware (Figure 4,6):

Figure 4: D-UML Groupware

q UML view: represents a high-level architecture of
a system being modelled which is composed of  
use cases, class diagrams, objects etc…. The
users manipulate the UML view in a similar way
as a CASE tool. However the interaction is
simpler, enabling the use with a touch screen or a
smart board.

q Scribbling view: composed of free-hand drawing,
handwritten annotations, scribbling and any
mean that enables a communication in a team.
The scribbling view and the UML view are
superimposed, so that developers can use
scribbling to draw attention to specific parts of
the model.

q D-UML is collaboration-aware; several users can
simultaneously interact with the application and
with each other. Each user that joins a modeling

session, his icons is added to the list of the
participants and the moment he starts an action
his icon is selected with a red square to let the all
participants know who is doing what. It was a
default implementation of the awareness
component.

q Rationale view: where we describe in a structured
way the Questions that are raised while a
brainstorming session, the different Options that
could be envisaged and the Criteria that influence
a decision. To each artifact being modeled, a
related rationale view is created to track its
history and the knowledge behind its existence
and its relation to other artifacts. D-UML
supports conflict resolution activity through an
assessments matrix that regroups the different
options versus criteria. Criteria are used to
selectively identify the acceptance or
differentiation of an option. Positive assessment
indicates an option satisfies a criterion. A
negative assessment indicates an option hurts a
criterion (Figure 5).  

O/C(examples
)

Criterion1(platfor
m independent)

Criterion2(fast
execution)

Option1(C++) - +
Option2(Java) + -

Figure 5: Matrix option vs. criteria

q  D-UML provides some history features: replay
allows a user that didn’t attend the meeting or
simply joined it late can replay the session to see
what have been done so far, who did what and
who were present. The replay functionality is
simple and interesting; it shows all the steps the
meeting went through till the current status of
the brainstorming session. Undo/Redo feature
that can be initiated in single as well as in
distributed settings.



Figure 6: D-UML Views

6. Conclusion and future work

In this paper, we described a generic framework
architecture to support synchronous distributed software
development meetings. We described D-UML as an
instance of this framework. D-UML allows us to
investigate the effectiveness and usability of distributed
software modelling activity. D-UML addresses the
following issues:
ÿ D-UML based on a What You See Is What We Share

(WYSIWWS) paradigm in that users don’t share
windows or applications but rather a model. The
advantages are that it provides potentially a lot of
flexibility in view sharing and respecting privacy,
although we visualize the same view in a given time,
scrolling, zooming and moving the view don’t
involve the rest of the users but rather only the
initiator.

ÿ  Support for integrated software modeling (UML),
rationale capture and management through
communication and history embedding.

ÿ  Support of replay sessions, where a user, who was
not present, can replay the meeting history, as well as
Undo/Redo functionalities.

ÿ Support for distributed collaboration over formal and
informal artifacts

D-UML has been refined in the context of a small group
of researchers.  For further usability evaluation, D-UML
will be used in an experiment with two sets of groups,
one group who uses D-UML and the other who does not,
both trying to accomplish the same task to collaborate
over a system model from different locations.
In the near future we plan to support the following
features:

ß Adding an interaction component that enables the use
of Augmented Reality technology by augmenting
desks with virtual UML objects and video streams to
experience the collaboration in another way and to
evaluate its usability.

ß Automate event trace for  post-mortem structuring of
design rationale capture.

7. References

[1] R.E. Grinter, J.D. Herbsleb, & D.E. Perry. “The Geography
of Coordination: Dealing with Distance in R&D Work”. ACM.
1999.

[2] I.Marsic. Data-centric collaboration in heterogeneous
environments. Submitted for publication.

[3] A.H. Dutoit, B. Paech, “Rationale management in Software
Engineering”, In S.K. Chang (ed.) Handbook of Software and
Knowledge Engineering, World Scientific Publishing, 2002
 [4]   R. M. Baecker, Readings in Groupware and Computer
Supported Co-operative Work, Assisting Human-Human
Collaboration, Morgan Kaufmann Publishers, 1993

[5] J. F. Nunmaker et al., “Electronics Meetings Systems to
Support Group Work”, Communication of the ACM, 34, 7,
1991.

[6] S. Greenberg et al., “Issues and Experiences Designing and
Implementing Two Group Drawing Tools”, in Proc. Of the 25th

Annual Hawaii International Conference on The System
Science, pp. 139-250, Jan 1992

[7] G. M. Olson et al, “Small Group Design Meeting: An
Analysis of Collaboration”, Human-Computer Interaction, 7,
347-374, 1992

[8] G. M. Olson et al, “Designing Software For A Group’s
Needs: A Functional Analysis of Synchronous Groupware”,
in User Interface Software, Edited by Bass and Dewan, John
Wiley & Sons Ltd, 1993

[9] Herlea, D. (1997). A groupware system for negotiating
software requirements. M.Sc. thesis, Dept of Computer
Science, University of Calgary, Alberta, Canada.

[10] D. Damian. An empirical study of requirements
engineering in distributed software projects: Is distance
negotiation more effective? In Asian Pacific Software
Engineering Conference, Dec. 2001.

[11] Dourish, Paul, and Bellotti, Victoria. "Awareness and
Coordination in Shared Work Spaces." Proceedings of ACM
Conference on Computer-Supported Cooperative Work,
Toronto, Canada, November 1992



GNOME, a case of open source global software development

Daniel M. German
Department of Computer Science

University of Victoria
dmgerman@uvic.ca

Abstract

The GNOME Project is an open source project which
main goal is to create a GUI desktop for Unix systems, and
encompases close to two million lines of code. It is com-
posed by a group of more than 500 different contributors,
distributed across the world Some companies employ sev-
eral of these contributors with the hope of accelerating the
development of the project, but many other contributors are
volunteers. The project is divided into several dozen mod-
ules, ranging from libraries (such as GUI, CORBA, XML,
etc) to core applications (such as email client, graphical
editor, word processor, spreadsheet, etc). This paper de-
scribes the organization and management of the project and
describes the infrastructure needed by a contributor, how
contributors work as independently together, but still with a
common goal. It also describes how requirement gathering
takes place, and its unique administration structure, rooted
in the GNOME Foundation, a body created solely to oversee
the current and future development of the project.

1. Introduction

Bruce Perens describes open source as software that pro-
vides the following minimal rights to their users: 1) the
right to make copies of the program, and distribute those
copies; 2) the right to have access to the software’s source
code; and 3) the right to make improvements to the program
[11]. Some of the classical examples of open source soft-
ware are the Linux operating system, the Apache Jakarta
project, or the GNU toolkit of software development tools
(gcc, emacs, make). The GNU Network Object Model En-
vironment (GNOME) Project (www.gnome.org) is an at-
tempt to create a free (as defined by the General Public Li-
cense, and therefore open source) desktop environment for
Unix systems. It is composed of three main components:
an easy-to-use GUI environment, a collection of tools, li-
braries, and components to develop this environment, and
an “office suite” [5]. The GNOME Project was founded by

Miguel de Icaza in 1996 as a loosely coupled group of de-
velopers, scattered all over the world. The project currently
involves around five hundred developers. The first version
(0.10) was posted in 1997. Version 1.0 was released in
March 1999, a point in which it was integrated into Red Hat
Linux as its default desktop. Version 2.0 is the latest stable
version, released in 2002, and development of Version 2.2
is on its way. GNOME is composed of a large collection of
programs and libraries, comprising almost two million lines
of code [1, 2].

2. Infrastructure

One of the main requirements for distributed develop-
ment is agreement on a common toolkit for software devel-
opment, as each of the members of the team is expected to
have access to these tools. In a private development, this
is not an issue, as it is expected that the organization will
provide the necessary software. Given the philosophy be-
hind OSS and because volunteers are an important driving
force in OSS, the toolkit of choice is usually OSS itself (one
notable exception to this rule is the use ofbitkeepera com-
mercial product for configuration management used by the
Linux project, free to be used by Linux developers, with
certain restrictions).

GNOME uses, like many OSS projects, the GNU toolkit
(gcc, make, autoconf, automake, emacs, vi, etc), CVS for
software configuration management, Bugzilla for bug man-
agement, GNU Mailman for its mailing lists, and of course,
because its goal is to provide a desktop for Linux, it uses
Unix as its development platform. Potential developers, by
just installing a recent version of Linux, have an environ-
ment that allows them to start contributing to the project.
The cost of entry is therefore minimized.

It is important to note that contributions to an OSS
project are not only restricted to working code (patches, as
they are commonly called); they can include documenta-
tion, bug reports, artwork, translations to other human lan-
guages, and many others. In this paper, we will use the term
developer to refer to any type of contributor to the project.



3. Project Management

In order to handle a project of this magnitude, the code
base is divided intomodules. There are four main groups
of modules: a) required libraries (19 modules); b) core ap-
plications (4 modules); c) applications (16 modules), and
d) other (several dozen modules and growing, these mod-
ules represent individual applications that are not consid-
ered part of the core of GNOME). Each module has one
or more maintainers, who oversee the development of their
corresponding module and coordinate and integrate the con-
tributions of other developers to their module [3]. In a way,
a module represents an independent product that can have
its own maintainer, sets of requirements, development time-
line. These modules are interrelated between themselves,
but there relationships are kept to the minimum, so each
module can evolve as independently as possible from the
rest.

In an analysis of SourceForge projects, Krishnamurthy
found that most OSS projects are composed of a handful
of developers [8]. GNOME is one of the few projects that
appears to break this rule, given that more than 500 peo-
ple have “write access” to its CVS repository. Zawinsky,
a Mozilla developer, provides insight to this phenomenon:
“If you have a project that has five people who write 80% of
the code, and a hundred people who have contributed bug
fixes or a few hundred lines of code here and there, is that a
’105-programmer project?” (as cited in [7]).

A preliminary analysis of the development logs appears
to agree with Zawinsky’s view. Most modules have few
developers who write most of the code. For example, Evo-
lution (the mail client of the GNOME project) is composed
of approximately 160kLOCS (Feb. 2003) and almost 50%
of the times the source code has been modified, the change
can be attributed to one of 5 developers (see figure 1) [4].

The success of the GNOME project seems to lie in the
division of the project into manageable modules in which a
handful of developers (a team) can concentrate. The amount
of communication between developers is therefore mini-
mized.

As some modules grow into large entities themselves,
they are then broken into smaller modules. For example,
Evolution is broken into slightly more than 20 submodules,
each as independent as possible from the rest. In includes
modules dedicated to user interface, different mail libraries,
filters, importers, documentation, translations, etc.

4. Requirements

As described in [12], most OSS projects do not have a
traditional requirement’s engineering phase. Specially at
the beginning of GNOME, the only stakeholders were the
developers who acted as users, investors, coders, testers,

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  5  25  125

%
 o

f d
ev

el
op

er
s

Number of developers (log scale)

Number of transactions per each developer, Accumulative 

Transactions 

Figure 1. This plot shows the number of CVS
transactions committed to Evolution per de-
veloper. From a total of 196 developers, 5 ac-
count for 47% of the CVS transactions, while
20 account for 81% of the transactions, and
55 have done 95% of them.

documenters, etc., with little interest in the commercial suc-
cess of the project, but who, at the same time, wanted to
achieve respect from their peers for their development abil-
ities. One of the main goals of the developers is to produce
software that is used by its associated community.

In particular, we can identify the following sources of
requirements in GNOME:

• Vision. One or several leaders provide a list of require-
ments that the system should satisfy. In GNOME this
is epitomized by the following non-functional require-
ment: “GNOME should be completely free software”
(free as defined by the Free Software Foundation).

• Reference Applications. Many of its components are
created with the goal of replacing similar applications.
The GNOME components should have most if not the
same functionality as these reference applications. For
example, gnumeric uses Microsoft Excel as its refer-
ence, ggv uses gv and the kghostview, Evolution uses
Microsoft Outlook and Lotus Notes.

• Asserted Requirements. In few cases, the requirements
for a module or component are born from a discussion
in a mailing list. In some cases, a requirement emerges
from a discussion whose original intention was not to
do requirement analysis. In other instances (as it is the
case of Evolution), a person posts a clear question in-
stigating discussion on the potential requirements that
a tool should have. Evolution was born when sev-
eral hundred messages were created describing the re-
quirements (functional and non-functional) that agood
mailer should had before coding started.



• A prototype. Many projects start with an artifact as a
way to clearly state some of the requirements needed in
the final application. Frequently a developer proposes
a feature, implements it, and presents it to the rest, who
then decides on its value and chooses to accept the pro-
totype or scrap the idea [6]. GNOME started with a
prototype (version 0.1) created by Miguel de Icaza as
the starting point of the project.

• Post-hocrequirements. In this case, a feature in the
final project is added to a module because a developer
wants that feature and he or she is willing to do most
of the work, from requirements to implementation and
testing. This feature might be unknown by the rest of
the development team until the author provides them
with a patch, and a request to add the feature to the
module.

Regardless of the method used, requirements are usu-
ally gathered and prioritize by the leader of the project, the
maintainer or maintainers of the module and potentially the
Foundation (see section 6). A maintainer has the power to
decide which requirements are to be implemented and in
which order. The rest of the developers could provide input
and apply pressure on the maintainers to shape their deci-
sions (as inpost-hocrequirements). Sometimes a subset of
the developers group might not agree with the maintainer’s
view, and could potentially jeopardize the project, and cre-
ate what is known as a fork (see section 5). So far this has
not happened within GNOME.

5. Module Maintainers

Module maintainers serve the roles of leaders for their
module. [9] identified the main roles of a leader in an OSS
project as:

• to provide a vision;

• to divide the project into parts in which individuals can
tackle independent tasks;

• to attract developers to the project;

• to keep the project together and prevent forking.

The success of an OSS project is dependent on the abil-
ity of its maintainer to divide it into small parts in which
developers can work with minimal communication between
each other and, with minimal impact to the work of others
[9]. GNOME has been able to attract and maintain good,
trustworthy maintainers in its most important modules due
mainly by being employees paid by different companies to
work on GNOME.

5.1. The Paid Employees

As we described in [3], several companies have been
subsidizing the development of GNOME. RedHat, Sun Mi-
crosystems, and Ximian are some of the companies who pay
full time employees to work on GNOME. Paid employees
are usually responsible for the following tasks: project de-
sign and coordination, testing, documentation, and bug fix-
ing. These tasks are usually less attractive to volunteers.By
taking care of them, the paid employees make sure that the
development of GNOME continues at a steady pace. Some
paid employees also take responsibility (as maintainers) for
some of the critical parts of the project, such as gtk+ and
CORBA (RedHat), the file manager Nautilus (Eazel, now
bankrupt), Evolution (Ximian), etc. Paid employees con-
tribute not only in the form of code. One of the most vis-
ible contributions of Sun employees is the proposal of the
GNOME Accessibility Framework, which aims at guaran-
teeing that GNOME can be used by a vast variety of users,
including persons with disabilities.

In the case of Evolution, the top 10 contributors (which
account for almost 70% of the CVS commits) are all Ximian
employees.

Volunteers still play a very important role in the project
and their contributions are everywhere: as maintainers and
contributors to modules, as bug hunters, as documenters, as
beta testers, etc. In particular, there is one area of GNOME
that remains done mainly by volunteers: internationaliza-
tion. The translation of GNOME is done by small teams of
volunteers (volunteers who usually speak the language in
question and who are interested in seeing support for their
language in GNOME).

As with any other open source project, GNOME is a
meritocracy, where people are valued by the quality (and
quantity) of their contributions. We are currently evaluating
the commit logs to analyze the amount and type of contri-
butions from these paid employees to the project and how
they compare to the contributions of volunteers. Most of the
paid developers in GNOME were at some point volunteers.
Their commitment to the project got them a job to continue
to do what they did before as a hobby.

6. The GNOME Foundation

Until 2000, GNOME was a run by a “legislature” where
each of its developers had a voice and a vote and the de-
veloper’s mailing list was the “floor” where the issues were
discussed. Miguel de Icaza served as the “constitutional
monarch” and “supreme court” of the project, and had the
final say on any unsolvable disputes. This model did not
scale well, and was complicated when Miguel de Icaza cre-
ated Helixcode (now Ximian), a commercial venture aimed



at continuing the development of GNOME, planning to gen-
erate income by selling services around it.

In August 2000 the GNOME Foundation was instituted.
The mandate of the Foundation is “to further the goal of the
GNOME Project: to create a computing platform for use by
the general public that is completely free software.” [13].
The Foundation fulfills the following four roles [10]: 1) it
provides a democratic process in which the entire GNOME
development community can have a voice; 2) it is the re-
sponsible for communicating information about GNOME
to the media and corporations; 3) it will guarantee that the
decisions on the future of GNOME are done in an open and
transparent way; 4) it is a legal entity that can accept dona-
tions and make purchases to benefit GNOME.

The Foundation is composed of four entities: its mem-
bers (any contributor to the project can apply for mem-
bership); the board of directors (composed of 11 demo-
cratically elected contributors, with at most four with the
same corporate affiliation), the advisory board (composed
of companies and non-for-profit organizations), and the ex-
ecutive director. As defined by the Foundation’s charter, the
board of directors is the primary decision-making body of
the GNOME Foundation. The members of the board are
supposed to serve in a personal capacity and not as repre-
sentatives of their employers. The Board meets regularly
(usually every two weeks, via telephone call) to discuss the
current issues and take decisions in behalf of the entire com-
munity. The minutes of each meeting are then published in
the main GNOME mailing list.

6.1. Committees

Given the lack of a single organization driving the devel-
opment according to its business goals, OSS projects tend to
rely in volunteering to do most of the administrative tasks
associated with that project. In GNOME, committees are
created around tasks that the Foundation identifies as im-
portant. Developers then volunteer to be members of these
committees.

Examples of committees are: “GUADEC” (responsible
for the organization of the conference),, “Web team” (re-
sponsible for keeping the Web site up-to-date), “sysadmin”
(responsible of system administration of the GNOME ma-
chines, the “release team” (responsible for planning and
releasing the official GNOME releases), the “Foundation
Membership” (responsible for maintaining the membership
list of the foundation), and several others.

6.2. The Release Team

Each individual module has its own development time-
line, and objectives. Planning and coordination of the over-
all project is done by the Release Team. They are respon-

sible for developing, in coordination with the module man-
tainers, release schedules for the different modules, and the
schedule of the overall project. They also keep track of
the development of the project and its modules, making
sure that everything stays within schedule. Jeff Waugh, a
GNOME Foundation member, summarized the accomplish-
ment of the team and the skills required (in his message of
candidacy to the Board of Directors in 2002):

[The Release Team] has earned the trust of
the GNOME developer community, madly hand-
waved the GNOME 2.0 project back on track, and
brought strong co-operation and “the love” back
to the project after a short hiatus. It has required
an interesting combination of skills, from cheer-
leading and Maciej-style police brutality to subtle
diplomacy and ’networking’.

7. Communication

Developers are located in many different places all
around the world. As described above, some are volun-
teers and the rest works for different organizations (and
even within those organizations, they might still be located
in different parts of the world, as it is the case with some
Ximian developers). The GNOME communication relies
on the following:

• Mailing Lists. The GNOME project has extensively
used mailing lists. These lists have a wide range of
purposes: some are intended for final users, some for
particular components of the software, some for an-
nouncements, etc. Mailing lists provide a trail of deci-
sion making for the project.

• IRC: Internet Relay Chat. The “watercooler conversa-
tions” have been mimicked by using irc. Developers
connect to a common IRC server/channel, and wait for
other users to connect. The conversation is informal,
with no real agenda.

• Web sites. The Web sites of the project comprise a
large amount of information, intended for every type
contributor to the project (coders, bug reporters, bug
hunters, documenters, translators, etc).

• GUADEC, the GNOME Conference is a Foundation’s
effort to get developers together. Its goal is to provide
a venue for discussion, interaction, and training. The
Foundation attempts to support many of the developers
who cannot afford their own traveling expenses. This
year’s GUADEC will last 5 days and will take place in
Dublin, Ireland.



• The GNOME Summaries. Every two weeks a sum-
mary is published in the GNOME mailing list. It usu-
ally contains the most relevant events of the period,
links to new or improved documentation, news spe-
cific to different GNOME modules, a “Hacker Activ-
ity” section, enumerating the most active modules and
the most active developers in the project, and a bug-
hunting section, listing the number of current bugs per
module including the progress made during the period.

8. Conclusions

After almost 6 years of development, GNOME has
demonstrated to be a success. One of the major accomplish-
ments of the project was the decision of Sun to replace its
outdated CDE with GNOME. Its “free software” nature has
created special requirements in the way that the project is
organized and managed. Furthermore, GNOME is a project
where people employed by different companies and vol-
unteers work together with a common goal. Developers
contribute in a wide range of ways (code, testing, bug re-
ports, documentation, artwork, bug-hunting, system admin-
istration) and are located across the world, relying on the
ability of its leaders and maintainers to manage the project,
on the Internet as its communication channel and on sev-
eral tools (such as mailing list, Web pages, CVS, Bugzilla)
to maintain a good-enough communication that allows for
the project to proceed. Recently, the Foundation has taken
the responsibility of giving the project a coherent vision for
the present and into the future, aimed at guaranteeing that
GNOME continues to fulfill its main goal: “to create a com-
puting platform for use by the general public that is com-
pletely free software.”

About the author

Daniel M. German is a member of the GNOME Founda-
tion and was the maintainer of ggv, the PostScript viewer for
the GNOME project. He is currently assistant professor of
computer science at the University of Victoria, in Canada.
In his spare time he enjoys hacking free software.

References

[1] J. Charles. Linux Support Ranges from GUI to Big Blue.
Computer, 32(5):20–22, May 1999.

[2] M. de Icaza. GNOME History.
http://primates.helixcode.com/˜miguel/gnome-history.html,
2002.

[3] D. M. German. The evolution of the GNOME Project. In
Proceedings of the 2nd Workshop on Open Source Software
Engineering, 2002.

[4] D. M. German and A. Mockus. Automating the Mea-
surement of Open Source Projects. InProceedings of the
3rd Workshop on Open Source Software Engineering, May
2003. To appear.

[5] T. Gwynne. GNOME FAQ.
http://www.gnome.org/faqs/users-faq/, 2003.

[6] S. Hissam, C. B. Weinstock, D. Plakosh, and J. Asundi.
Perspectives on open-source software. Technical Report
CMU/SEI-2001-TR-019, Software Engineering Institute -
Carnegie Mellon, November 2001.

[7] P. Jones. Brooks’ law and open source: The more the mer-
rier? does the open source development method defy the
adage about cooks in the kitchen? IBM developerWorks,
August 20, 2002.

[8] S. Krishnamurthy. Cave or Community? An Empirical Ex-
amination of 100 Mature Open Source Projects.First Mon-
day, 7(6), June 2002.

[9] J. Lerner and J. Triole. The Simple Economics of Open
Source. Working Paper 7600, National Bureau of Economic
Research, March 2000.

[10] D. Mueth and H. Pennington. GNOME Foundation FAQ.
http://foundation.gnome.org/faq.html, 2002.

[11] B. Perens. Open Sources: Voices from the Open Source
Revolution, chapter The Open Source Definition. O’Reilly,
1999.

[12] W. Scacchi. Understanding the requirements for developing
open source software systems.IEE Software, 149(1):24–39,
February 2002.

[13] The GNOME Foundation. GNOME Foundation Charter
Draft 0.61. http://foundation.gnome.org/charter.html,Octo-
ber 2000.



Experiences in Distributed Development:  A Case Study

Lori Kiel, P.Eng.
Interdisciplinary M.A. Candidate, Departments of Anthropology and Computing Science

University of Alberta, Edmonton, Canada
lkiel@ualberta.ca

Abstract

The findings from a case study involving a mid-sized
software development organization illustrate the complex
interaction of factors common to many global software
development projects.  The focus of the study is a single
product development group that was distributed between
two international divisions of the company, one in
Canada and one in Germany, for a twenty-month period.
When the distribution ultimately failed, it was a web of
social, cultural, linguistic and political factors, rather
than use or misuse of specific tools or techniques, that
emerged as being most significant in the project’s
ultimate demise.  A summary of these factors is presented
here.

1. Introduction  

Despite a recent decline in the international software
industry, there is every reason to believe that there will be
continuing pressures towards the adoption of globalized
approaches to software creation.  These approaches may
take the form of formalized outsourcing agreements; they
may emerge as collaboration among various divisions of
international organizations; or they may consist of a small
group of individual programmers who work together but
live in separate cities.

Consequently, managers are frequently asked to
organize software development projects that draw upon a
mix of personnel in multiple locations.  The technical
barriers to such practices are diminishing rapidly.  What
about the human factors? Given the newness of the
phenomenon, internationally distributed software
development projects, whether they work, and why they
either succeed or fail are little understood.  

The study described here was undertaken in order to
contribute to the small but growing body of empirical
knowledge of global software development.  

 

  This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada, the Social Sciences and
Humanities Research Council of Canada, the Alberta Software
Engineering Research Consortium and the Departments of
Anthropology and Computing Science at the University of Alberta.

2. The Company

The subject company is a medium sized software
development firm with offices in Canada, the United
States, Germany and Malaysia.  While some of the
international offices were originally created within the
corporate umbrella, others were acquired within the last
two or three years.  Consequently, the company has a
diverse and dispersed set of resources, and managing that
diversity represents a significant challenge.

Given this international structure, it is not surprising
that the organization has undertaken distributed projects
in one form or another for much of its history.  Many of
these projects have been short term, or structured on an ad
hoc basis according to shifting delivery and development
pressures.  One project, however, represented a departure
from this pattern.  

For a period of roughly twenty months, spanning
October 1999 to May 2001, the company structured all
development of one of its core projects according to a
fully distributed model.  Before that time, they used
multiple teams in their German and Canadian offices
creating customized versions of this core application for
each client.  Teams in Canada developed for North
American clients, while teams in Germany handled clients
in Europe. In order to reduce duplication of efforts and
facilitate a comprehensive code re-use strategy, they
pooled their expertise in the two offices.  A single
distributed team was created; it was given the task of
producing a new version of the product that would be the
base of all future developments.

Ultimately, the distribution failed, and the company
consolidated all development for the base product in a
single office.  While a base version was successfully
created, the significant overhead required to support the
distribution was deemed to be too expensive.

The purpose of my study was to answer the question,
how did the distribution of software development for this
product fail?

3. Method

In order to answer this question, I completed a
qualitative case study in which interviews constituted the
primary data collection technique.  Senior managers in the
company developed a comprehensive list of all project



participants from which seventeen individuals were
selected for participation in the study.  These seventeen
participants represented a cross-section of the development
process, including managers, business analysts, trainers,
team leads and developers.  I interviewed all seventeen
individuals, recorded those interviews where possible, and
used the transcripts and interview notes as the basis of
analysis.  

The strength of qualitative research is its ability to
engage with multiple perspectives as experienced by
participants in a particular set of circumstances, and to
isolate recurring patterns or characteristics.  To that end, I
created codes that reflected the patterns that emerged from
a preliminary review of the data.  These codes were further
refined upon a second review of the data.

In total, I applied twenty-three codes to the data.  They
fit into three main categories that form my analytical
framework. The first consists of the main themes of
distributed development that have emerged from the data.
These themes represent the abstract or broad conceptual
challenges to distribution that participants described.  

The second category consists of the practices or
specific ways of doing things on the ground, on a day-to-
day basis within the company as described by the
participants.   It is at the level of practices where the
themes are realized and reinforced.  

Finally, a third category contains general observations
made by the participants about the process of distributed
development.  This category contains the participants’
own reflections on the overall practice of distribution, not
necessarily their own experiences with a particular
distributed project or projects.

4. Themes

I identified five main themes in the interview data:
time, language, power, culture and trust.  These themes
define the broad, conceptual challenges to distributed
software development that emerged in this case study.
Taken individually, none of them is particularly
surprising.  The cumulative impact is, however,
remarkable.

4.1. Time

Overwhelmingly, participants reported that the eight-
hour separation in time zones between the two offices
presented a substantial challenge to the project.  When
people were arriving at the office in Germany (8am),
people in Canada (midnight) had long since left for home.
The workday was just starting for the Canadian
developers as things wound down in Germany.
Depending on the schedules of particular individuals, it
was possible for there to be little or no overlap in the
workday.

The most often reported consequence of this temporal
separation was a reliance on asynchronous communication
techniques, primarily e-mail.  Problems that should have

been simple to resolve often dragged on for days.  What
might have been settled by a quick conversation was often
blown out of proportion because the information needed
in order to resolve the situation had to be communicated
through e-mail, a message that might not be read for as
much as 16 hours.  Furthermore, the conversion of ideas
and arguments into e-mail form introduced great
opportunity for misunderstanding, particularly
problematic when the content of the communication was
contentious or argumentative.  

4.2. Language

The main business language of the company is
English.  Not surprisingly, language emerged as a point
of tension for almost all of the German participants, as
well as for those participants from the Canadian office
who had spent considerable time in Germany.  The most
common observation was that it was very difficult to
fully participate in a teleconference in English.  Often
such meetings were oriented to some sort of problem
solving or dispute resolution and, as such, could be
dynamic and highly charged.  Voices were raised, and
people spoke rapidly. German participants reported
frustration at not being able to follow or participate in the
discussion.  Canadians often interpreted the silence
coming from the other office as an indication that no one
in Germany wanted to participate or add to the
discussion, and carried forward with the meeting.  Many
of the Canadian participants described being in meetings
in Germany where they could see that the majority of the
people participating in the teleconference were having
great difficulty following the discussion.

In addition, many of the German participants reported
a reluctance to engage in argument over the telephone.
When technical or methodological debates arose – a
necessary component of any software development
activity – German speaking participants reported that they
preferred to have the time to formulate their position,
write it down, check it, ensure that they were saying what
they meant to say and, finally, send it off in an e-mail.  
While this addressed their discomfort, it introduced the
potential for misunderstanding and stretched out the
problem-solving exercise over an extended serious of
asynchronously exchanged e-mails.

4.3. Culture

Many participants – from both offices - suggested that
people in the two offices could be characterized as
exhibiting a particular set of attributes they identified
with the term culture. They indicated that people perceive
things differently, people say things differently, and
people make things differently. Participants identified
cultural differences as having posed a challenge to the
project.

For example, the Germans were described as being
blunt, efficient, stubborn, and to the point, but reluctant



to speak out and criticize openly.  On the contrary, the
Canadians were described as being laid back, chatty,
comfortable with open criticism, lax and indecisive.
Several participants reported that the Canadians often
interpreted the Germans as being rude, and that the
Germans were often frustrated by the Canadian way of
doing things.  Most individuals acknowledged the
differences in national culture, and were aware of how
their own behavior might be interpreted by people in the
other office.  Despite this awareness, frustration with the
behavior of the other group persisted.

4.4. Power

One issue that was not necessarily explicitly stated,
but emerged in some form in many conversations was the
issue of power.  Many participants reported that,
particularly in the early days of the distribution of the
project, decisions were made in the Canadian office and
flowed to the German office.  According to one
participant, the Canadian office has historically seen itself
as the ‘brains of the operation’.  Managers were typically
located in the Canadian office.  On many occasions,
managers from the Canadian office temporarily relocated
to Germany, but there were no managers from within the
ranks of the German office.  

The flow from Canada to Germany was not restricted
to management personnel and management decisions:
technical standards and architectural decisions usually
originated in the Canadian office and the developers in
Germany were expected to adopt these standards and
accept the decisions.  Many participants reported a strong
resistance on the part of the German developers.  These
developers often refused to follow standards or use tools
developed in other offices.  One senior manager reported
with frustration on the outright intransigence on the part
of some in the German office.  Another offered that not
following standards was almost a point of pride, and
suggested that managers failed to recognize the
importance of local ownership of standards.  The history
of the company is characterized by a marked imbalance of
power between the Canadian and German offices.

4.5. Trust

Temporal separation, language gaps, cultural
differences and inequality between the two offices all
contributed to the challenge of building an atmosphere of
trust, respect and cooperation that characterizes a cohesive
software development team.  Common to participants
from both offices were stories of misunderstandings,
angry exchanges, and complete dismissal of people in the
other office as incompetent.  Indeed, such tensions seem
to extend well beyond the specific boundaries of the
project of concern for my case study.  Many participants
reported general problems in dealing with the other office,
regardless of the particular project.  One participant
described the friction between the two offices.  

Several participants suggested that when you are
physically separated from co-workers, it is easy to ignore
them and devalue their contributions and abilities.  At
great distance it is difficult to empathize with those in the
other office, and this in turn makes it challenging to
maintain an atmosphere of mutual respect and shared
understanding.  Several people commented that it often
seemed that simple choices – for example, the timing of a
meeting - completely failed to consider the impact on
those in other offices.

Participants generally acknowledged that the people in
the other office were not, in fact, incompetent: everyone
recognized the abilities of their co-workers.  Nonetheless,
several people noted that when denied access to the
context in which a decision was made and the detailed
reasoning that entered into the decision, it became very
easy to dismiss an apparently poor choice as being the
work of an idiot.  This was particularly the case in a
crunch situation when everyone was under pressure to
meet a deadline.  

5. Practices

Along with the five themes identified above, I have
isolated several practices that articulated with the themes,
dramatically impacting the experience of distributed
development for the project participants.  Many of these
practices involve specific tools such as e-mail, telephone,
teleconference, StarTeam (configuration management
tool), net-meeting, translation tools, and the company
intranet.  Others refer more to business processes or ways
of doing things, like software process, project team size,
project scope, management practices and travel for face-to-
face meetings.  There is a complex interaction among the
various themes and practices that must be explored if
anything is to be learned about this particular distributed
software development exercise.

For example, while the practice of using e-mail has
several basic characteristics that exist in any circumstance,
certain properties become critical when it is employed in a
predominantly asynchronous and politically charged
communication environment.  Other qualities emerge
when messages are exchanged between people from
different cultural or linguistic backgrounds. And still
other factors are important when messages are exchanged
between close friends.  Examination of these contextual
elements is fundamental to understanding how e-mail and
other practices shape and are shaped by the distributed
software development project.

Teleconferencing is another practice that deserves
careful consideration.  Anyone who has participated in a
teleconference can identify with the awkwardness of this
form of dialogue.  It’s often difficult to control speaking
order, people frequently talk over one another, and
equipment problems can make people in the other
location difficult to understand.  The data in this study
indicate that when linguistic and cultural differences are



present, along with inter-office power struggles, these
problems are dramatically amplified.  

Managers at the organization recognized the challenges
presented by the project’s linguistic, cultural and political
context, and tried many things to mitigate the emerging
problems. For example, English language training was
made available in the German office, with some success.
In addition, developers were repeatedly encouraged –
“prodded” – to phone their colleagues when problems
needed resolving, rather then send them messages via e-
mail.  Unfortunately, the time zone separation limited the
effectiveness of this approach.

The project team leaders employed a simple but
powerful tool to create links among team members:  the
company intranet.  They created a site where they posted
photographs of everyone working on the project.  Their
goal was to decrease the personal distance between the
teams.  It was generally well received, and many
participants commented on the positive impact that this
had on the team.

Another practice that many respondents had positive
comments about was the opportunity to travel to the other
office.  Such travel provided an occasion to get to know
and work with individuals from that office.  They made
high-bandwidth, face-to-face meetings possible, and
provided an excellent opportunity for what one participant
called cross-pollination between the offices:  an
opportunity to exchange ideas about how the thing that
everyone is building should be built.  When people spent
time with one another, the cultural, and linguistic barriers
began to break down, leading to less conflict.   According
to one senior level manager, these exchanges were ‘like
gold’.  Many people reported that whenever team
members spent time in the other office it was a successful
team-building occasion.

Despite these efforts, it was team-building that
emerged as one of the biggest challenges for this project.
Numerous respondents indicated that, while they put
many processes into place to coordinate and control day-
to-day activities, and while these processes were
successful for the most part, process was not enough.
Throughout the twenty-month term of the distributed
development experiment, a strong sense of a single team
never emerged.  

6. Participants’ General Comments

Most participants eagerly voiced their general opinion
about their experience with distributed software
development.  They talked about communication in a
very broad sense, incorporating language, time-zones,
culture, as well as one or more practices.  It was generally
recognized that the success of any programming activity
depends on successful communication and doing global
work requires a certain overhead to maintain
communication channels.  According to one participant,
when times are tight economically, it is these
maintenance activities that are easiest to cut.  Sooner or

later, however, there are problems in taking this approach.
Issues will pop up down the road.

Several participants used the term bandwidth  to
describe the character of the communication channel
between various teams and offices.  A high bandwidth
link exists between individuals located in the same city,
or between cities separated by a minimal number of time
zones, whereas the link between the Canadian office and
the German office has a very low bandwidth.  Bandwidth
is further degraded by cultural or linguistic distance.

Acknowledging the extra overhead inherent with
distribution, several people remarked that it was simply
too expensive for a single team, working from different
offices, to develop a single product.

7. Conclusion

It is always compelling to try and isolate the one
factor - the silver bullet [1] – that will solve a problem.
In this case, the problem is how to use globally
distributed technical personnel to create software in an
effective and economical manner.  For this study, no
single factor can be isolated as the cause of the failure.
For example, while temporal separation on its own might
not present an insurmountable barrier to successful
distribution, the cumulative impact of an eight-hour time
zone difference, a subsequent reliance on asynchronous
communication, and a poor inter-office relationship
appears to have been a significant obstacle.  Similarly,
while teleconference meetings are admittedly a challenge
for most of us, they nonetheless function as a powerful
and effective communication tool for many international
organizations.  This effectiveness is severely diminished
when language or cultural barriers hinder the degree to
which all people involved in the meeting can participate
fully.

In future work, I will analyze this data from an
anthropological perspective, using the anthropology of
technology as a general framework from which to consider
the technology of distributed software development.  This
analysis will employ a decidedly expanded view of
technology that considers not only the servers,
telephones, teleconferencing equipment, code repositories,
management practices and software processes that
structured the daily activities of the software developers,
but the social and cultural context in which these tools
and processes were employed.

In the absence of this analysis, it is my hope that this
summary of study findings will make a useful
contribution to discussions of global software
development.

8. References

[1] Brooks, Frederick P, The Mythical Man-Month, Addison
Wesley, Berkeley, 1995.



 
 

Defect Detection in a Distributed Software Maintenance Project 
 

Alessandro Bianchi, Danilo Caivano, Filippo Lanubile, Giuseppe Visaggio 
Dipartimento di Informatica – Università di Bari - Via Orabona, 4, 70126 Bari – Italy 

{bianchi, caivano, lanubile, visaggio}@di.uniba.it 
 
 

Abstract 
A large software project may be distributed over 

multiple sites when the organization needs resources 
which are available on a single site. However, previous 
empirical research in the context of telecommunication 
organizations has shown a number of disadvantages. In 
this paper we continue our comparative postmortem 
analysis on data from a large software massive 
maintenance project in the information systems domain, 
which in part has been carried out on a single site, and 
in part across multiple sites of the same organization. 
Results show that no significant differences exist among 
the distributed and collocated work with respect to the 
ability to detect defects. 

 
Keywords: Global Software Development, Empirical Study, 

Massive Maintenance 
 

1. Introduction 
 
The new forms of competition and cooperation that 

have arisen in software engineering as a result of the 
globalization process have had an impact on the whole 
software process. Software development and maintenance 
are often distributed across sites, thus involving an 
increasing number of people with different cultural 
backgrounds. Carmel and Agarwal [1] report that at 
present, 50 different nations are collaborating in different 
ways in software development. 

However, global software development has a number 
of drawbacks, which have been recognized by many 
studies, such as the need to apply ad hoc management 
methods [2], the need to use knowledge sharing tools [3, 
4], and the overhead derived from staff communication 
interchanges [5]. Herbsleb and Moitra [6] classified the 
main drawbacks in global software development in a set 
of issues: 
!"strategic issues, concerning the decisions on how to 

divide the tasks among sites, so as to be able to work 
as independently as possible while maintaining 
efficient communication among sites; 

!"cultural issues, that arise when the staff come from 
different cultural backgrounds; 

!"inadequate communication, caused by the fact that 
geographical distribution of the staff over several sites 
increases the costs of formal communications among 
team members and limits the possibility of carrying on 
the informal interchanges that traditionally helped to 
share experiences and foster cooperation to attain the 
targets; 

!"knowledge management, that is more difficult in a 
distributed environment as information sharing may be 
slow and occur in a non uniform manner, thus limiting 
the opportunities for reuse; 

!"project and process management issues, having to do 
with all the problems of synchronization of the work at 
the various different sites; 

!"technical issues, that have an impact on the 
communication network linking the various sites. 
Previous investigation on how geographical 

distribution affects software development and validation 
activities, have been carried out, respectively, at Lucent 
Technologies [7] and Alcatel [8]. Main findings were that 
distance negatively affects cost, time and quality. 
However, those studies were both conducted in the 
context of a telecommunication application domain and 
involved complex tasks. 

Our research takes its rise from the acknowledgement 
that the application domain and the software engineering 
task are both fundamental drivers of global software 
development costs and benefits. For projects involving 
massive, well-defined and stable activities, we hypnotize 
that the distribution over different geographical sites 
would present just a project management overhead. 

In this context, previous papers by the same authors 
concerned an explorative analysis [9] and an investigation 
on communication and project management issues [10]. In 
this paper, we investigate significant differences, if any, in 
detecting defects when maintenance activities are 
executed on a single site rather than on multiple sites. 

The paper is organized as follows: section 2 presents 
the maintenance project and the metrics used in the 
analysis; section 3 illustrates the data analysis; the results 
are discussed in section 4, and section 5 draws some 
conclusions. 

 



2. Case Study Setting 
 

2.1. Project Characterization 
 
Our research can be characterized as a post mortem 

analysis on data concerning a maintenance project carried 
out by EDS-Italia. In the following, we only summarize 
the main features of the maintenance project; interested 
readers can refer [10] for a more detailed presentation. 

The project consisted in a massive, non-routine 
maintenance of a large information system to solve the 
Y2K problem. To this end, the software system had been 
decomposed into 100 work-packages (WP), each being 
assigned to a working team. The maintenance effort had to 
deal with 52 of them. The job was partitioned between 2 
different geographically distant sites, both settled in Italy. 

The size of each WP is expressed by the number of 
items, where an item can be a program, a library element 
or a Job Control Language (JCL) procedure, i.e., a 
procedure written in a scripting language to control the 
program execution in batch systems. 

 

Figure 1. The process adopted for each WP in 
the maintenance project. 

 
The maintenance project was executed according to the 

following process (Fig. 1) that was enacted for each WP: 
!"a Project Management phase, aimed at managing and 

scheduling the activities for the WP; 
!"a Configuration Management phase, aimed at 

collecting and identifying all the artifacts produced 
within the WP; 

!"a Change phase, aimed at executing the maintenance 
of the items belonging to the WP; 

!"a Verification & Validation phase, aimed at looking 
for defects into the maintained artifacts. 
When defects are identified, the maintained items are 

reworked looping from the Corrective phase. 
The Verification & Validation phase, in turn, includes 

three sequential activities: 

!"a Test activity, aimed at looking for failures and 
related faults into the maintained items 

!"a Review activity, aimed at looking for defects into the 
maintained artifacts through inspection meetings;  

!"a Software Quality Assurance (SQA) activity, aimed at 
verifying that the maintained artifacts comply with the 
company’s Quality System. 
For all the WPs, the Project Management established 

to start process execution on a single site (hereinafter 
referred to as Site1) but, depending on both rework needs 
and currently available resources, the execution of Change 
and Defect Detection phases could also be switched to 
another site (hereinafter referred to as Site2). According to 
[5], we consider the WPs entirely executed at Site1 as part 
of a collocated project; conversely the WPs executed both 
at Site1 and Site2 as belonging to a distributed project.  

 
2.2. Data Collection 

 
The post-mortem analysis included all the work 

packages and covered the entire WP life cycle. In the 
following we only focus on the Defect Detection phase; 
the measures taken into account are: 
!"number of executed test cases and the number of faults 

that caused failures: in the following these will be 
referred to as faults from testing; 

!"number of reviews and the number of defects they 
found out (in the following, number of faults from 
review); 

!"number of audits and the number of issues they found 
out (in the following, number of non conformities); 

!"size of the WPs, expressed as number of items. 
Unfortunately, the number of failures has not been 

recorded by the organization, but only the number of 
faults generated by those failures. 

It is worth noting that the number of executed test 
cases, reviews and audits as well as the size of WPs are 
used only for verifying the comparability of the two 
projects. The dependent variables taken into account in 
our investigation are the number of faults from testing and 
from review and of the number of non conformities. 

Since the variation of WPs size is quite high, ranging 
from 6 items to 8337 items and with quartile values 
ranging from 68.5 items to 533 items, our analysis was 
based on the metric values normalized with respect to WP 
size.  

Having normalized, the tasks executed in the 
collocated and distributed project did not present 
technical differences. In fact, the number of items 
maintained was approximately the same in the two 
projects. The total number of maintained items was 
26,739: among these, 14,163 items (53%) were 
maintained in the collocated project, and 12,576 items 
(47%) in the distributed one. 

Project
Management

Configuration
Management

Change

Verification
& Validation

Review

SQA

Test

Project
Management

Project
Management

Configuration
Management
Configuration
Management

Change

Verification
& Validation

ReviewReview

SQASQA

TestTest



 

2.a) 

2.b) 

2.c) 
Figure 2 Boxplots of the normalized number of 

test cases (a), reviews (b), and audits (c), 
executed in collocated and distributed projects. 

 
 

For what concerns the activities of the Defect 
Detection phase: 
!"the density of test cases executed in the collocated 

project (median 1.327) is comparable to the 
normalized number of test cases executed in the 
collocated project (median 1.506); these results are 
summarized in Figure 2.a; 

!"the density of reviews executed in the collocated 
project (median 0.029) is comparable to the 
normalized number of reviews executed in the 
collocated project (median 0. 022); these results are 
summarized in Figure 2.b; 

!"the density of audits executed in the collocated project 
(median 0.030) is comparable to the normalized 
number of audits executed in the collocated project 
(median 0.020); these results are summarized in Figure 
2.c. 
 

3. Data Analysis 
 
Available data led to two samples from possibly 

different populations, and the samples taken into account 
were not normally distributed. Moreover: 
!"both samples are random samples from their respective 

populations; 
!"in addition to independence within each sample, there 

is mutual independence between the two samples; 
!"the measurement scale is at least ordinal. 

Since these assumptions allow to apply the Mann–
Whitney U test [11], we used this nonparametric test to 
analyze defect metrics. 

In order to investigate whether the distribution 
between sites does affect defect metrics, for each metric 
Mi the null and alternative hypotheses are formulated as 
follows: 
Hi0: There is no difference between the values of metric 

Mi for collocated WPs and for distributed WPs. 
Hia: There is a difference between the values of metric Mi 

for collocated WPs and for distributed WPs. 
 
3.1. Number of Faults from Testing 

 
The first analysis made on defects data assessed the 

number of faults discovered through the execution of the 
test activity. Figure 3 shows the boxplots of the 
distribution of number of faults for both collocated and 
distributed projects.  

For both the collocated and distributed WPs, the 
median is 0; the WPs in collocated case does not present 
any outlier, and they have three extreme values (0.004, 
0.021 and 0.071); conversely, the WPs in distributed case 
present two outliers (0.013 and 0.020) and two extremes 
(0.028 and 0.029). 

 

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 OutliersDistributed Collocated

Project

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

T
e
s
t
 
C
a
s
e
s
 
p
e
r
 
I
t
e
m

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 ExtremesDistributed Collocated

Project

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

N
.
 
R
e
v
i
e
w
 
p
e
r
 
I
t
e
m

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 ExtremesDistributed Collocated

Project

-0,1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

N
.
 
A
u
d
i
t
 
p
e
r
 
I
t
e
m



The non parametric Mann-Whitney U test failed to 
reveal a significant difference between the two groups (p-
level = 0.489). 

 

Figure 3 Boxplots of the faults from testing in 
collocated and distributed projects. 

 
3.2. Number of Faults from Review 

 
Figure 4 shows the boxplots of the distribution of 

number of faults discovered during the execution of the 
review activity for both collocated and distributed 
projects. 

For the collocated WPs, the median is 0.020 and for 
the distributed WPs the median is 0.040; the WPs in 
collocated case present an extreme value (0.429) and they 
have not any outlier; conversely, the WPs in distributed 
case have an extreme value (0.20), and two outliers (0.139 
and 0.154). 

 

Figure 4 Boxplots of the number of faults from 
review in collocated and distributed projects. 
 

The non parametric Mann-Whitney U test failed to 
reveal a significant difference between the two groups (p-
level = 0.212). 

 
3.3. Number of Non Conformities 

 
Figure 5 shows the boxplots of the distribution of 

number of non conformities for both collocated and 
distributed projects., The median is 0.0 for the collocated 
WPs and it is 0.005 for the distributed WPs; the WPs in 
collocated case present two outliers (0.063 and 0.071) and 
two extremes (0.089 and 0.111); the WPs in distributed 
case present one outlier (0.032) and one extreme value 
(0.077). 

The non parametric Mann-Whitney U test failed to 
reveal a significant difference between the two groups (p-
level = 0.633). 

 

Figure 5 Boxplots of the number of non 
conformities discovered in collocated and 

distributed projects. 
 
 

4. Discussion and Conclusions 
 
In general, collocating the maintenance activities or 

splitting them over two sites did not differ with respect to 
defect metrics. In both cases, the observed differences 
were all not statistically significant at the conventional 
0.05 p level. We postulate that these results can be 
explained by considering the context, which characterizes 
this case study. 

The specific maintenance task carried out was 
conceptually simple and it is characterized by a massive 
and repetitive nature. The main skills required to execute 
the maintenance were generic programming skills for the 
Y2K problem, and knowledge of the application domain 
and the software system to maintain. Therefore, the choice 
of the most adequate maintenance team to assign a WP 

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 ExtremesDistributed Collocated

Project

-0,02

0,00

0,02

0,04

0,06

0,08

0,10

0,12

N
.
 
N
C
N
 
p
e
r
 
I
t
e
m

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 ExtremesDistributed Collocated

Project

-0,05

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

F
a
u
l
t
s
 
f
r
o
m
 
R
e
v
i
e
w
 
p
e
r
 
I
t
e
m

Box Plot (defects2.sta 27v*52c)

 Median 
 25%-75% 
 Non-Outlier Range 
 Outliers
 ExtremesDistributed Collocated

Project

-0,01

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

F
a
u
l
t
s
 
f
r
o
m
 
T
e
s
t
i
n
g
 
p
e
r
 
I
t
e
m



was straightforward, even when teams were 
geographically separated. 

The majority of maintainers had a deep knowledge of 
both the application domain and the system, because of 
previous experience maintenance related to the same 
system. Moreover, all of them had been trained on the 
Y2K problem, and many maintainers had been already 
involved in other Y2K activities. 

Moreover, there was a strong organizational and 
cultural cohesion between the two sites because they were 
part of the same company and located in the same country, 
at a distance no more than 300 Km. 

Finally, since it was a massive maintenance project, 
the project components were loosely coupled and 
therefore the need to manage a common knowledge was 
kept to a minimum. 

As a consequence of these features, even the followed 
defect detection strategy was quite straightforward: the 
loose coupling of the project components to be maintained 
allowed project managers an easy partition and 
distribution of the items to test and WPs to inspect across 
sites. So, each site could operate on each WP as an 
independent (sub)system. In this way, the distribution of 
the Verification & Validation phase between sites did not 
determine any statistically significant difference with 
respect to the execution of the same phase in a collocated 
environment. 

Nevertheless the cultural homogeneity of the teams 
involved in the collocated and in the distributed project, 
extremes and outliers are encountered in all sets of data. 
This can be explained by the human-centric nature of 
software processes: maintainers adopted different tactics 
to execute the assigned tasks, even if simple. 

These results confirm the hypothesis we made in our 
previous analysis [10] about the need of an adequate 
management of the strategic, cultural, and technical issues 
in order to make effective the distribution of software 
process. If so, the distribution of the process over 
geographically distant teams makes it possible to include 
skilled people, wherever they are available, without 
significant loose in technical aspects of the process as well 
as the Defect detection. 

This study is one step towards a model of impact of 
geographical distance on critical factors of software 
development and evolution, which still needs further 
empirical investigation. 

 
 

References 
 
[1] E. Carmel, R. Agarwal, “Tactical Approaches for 

alleviating Distance in Global Software Development”, 
IEEE Software, Mar-Apr 2001, pp. 22-29. 

[2] A. Cockburn, “Selecting a Project’s Methodology”, 
IEEE Software, July-August 2000, pp.64-71. 

[3] K. Nakamura, Y. Fujii, Y. Kiyokane, M. Nakamura, K. 
Hinenoya, Y.H. Peck, S. Choon-Lian, “Distributed and 
Concurrent Development Environment via Sharing 
Design Information”, Proc. of the 21st Intl. Computer 
Software and Applications Conference, 1997. 

[4] J. Suzuki, Y. Yamamoto, “Leveraging Distributed 
Software Development”, Computer, Sep 1999, pp.59-
65. 

[5] C. Ebert, P. De Neve, “Surviving Global Software 
Development”, IEEE Software, Mar-Apr 2001, pp.62-
69. 

[6] J.D. Herbsleb, D. Moitra, “Global Software 
Development”, IEEE Software, Mar-Apr 2001, pp. 16-
20. 

[7] J.D. Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter, 
“An Empirical Study of Global Software Development: 
Distance and Speed”, Proc. Intl. Conf. on Software 
Engineering, 2001, pp. 81-90. 

[8] C. Ebert, C.H. Parro, R. Suttels, H. Kolarczyk, 
“Improving Validation Activities in a Global Software 
Development”, Proc. Intl. Conf. on Software 
Engineering, 2001, pp.545-554. 

[9] A. Bianchi, D. Caivano, F. Lanubile, F. Rago, G. 
Visaggio, “Distributed and Colocated Projects: a 
Comparison”, Proc. of the IEEE Workshop on Empirical 
Studies of Software Maintenance, 2001, pp. 65 – 69. 

[10] A. Bianchi, D. Caivano, F. Lanubile, F. Rago, G. 
Visaggio, “An Empirical Study of Distributed Software 
Maintenance”, Proc. of the IEEE Intl. Conf. on Software 
Maintenance, Montreal–Canada, October 2002, pp. 
103–109. 

[11] W.J. Conover, Practical Nonparametric Statistics, John 
Wiley and Sons, 1980 

 



  

Requirements Management in Global Software Development: Preliminary 
Findings from a Case Study in a SW-CMM contexti 

 
 

Rafael Prikladnicki, Jorge Audy, Roberto Evaristo 
School of Computer Science, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio 

Grande do Sul, Brazil; University of Illinois, Chicago, United States 
rprik@inf.pucrs.br, audy@inf.pucrs.br, evaristo@uic.edu 

 
 

Abstract 
 

The requirements analysis is an important phase in the 
software development process. In geographically 
distributed environments (Global Software Development), 
requirements management becomes critical due to the 
characteristics of the distributed development (physical 
distance, cultural differences, trust, communication, etc). 
The objective of this paper is to analyze the requirements 
management in geographically distributed environments, 
identifying the main challenges. The results are based on a 
case study carried on at Dell Computers, a multinational 
organization that has offshore software development 
centers in Brazil, India and Russia, and was recently 
certified in SW-CMM Model level 2 in the Brazilian unit. 
The results suggest the necessity to adapt the requirements 
management to the distributed software development 
environment, addressing the main existing challenges. The 
problems and the solutions adopted are presented, aiming 
to relate these solutions to the organization distribution 
level, considering the project team, users and customers. 
 

1. Introduction 
 

Software development has become part of the business 
globalization. This is mainly due the need for cost 
reduction, increased competitiveness and the possibility to 
share resources in a global scale [5]. As a consequence, 
the communication between the project team, users and 
customers occurs in a geographically distributed way. In 
this case, the requirements management seems to be an 
even more critical activity. Normally, the requirements’ 
gathering occurs in meetings having all the participants 
(project team, users and customers) in the same place. 
This facilitates the communication, becoming easier any 
negotiation or existing conflict resolution. In the Software 
Engineering literature, software requirements represent 
the interests of customers and users and are the heart of 
any project [8]. The quality and the capacity of analyzing 
and managing the requirements of a software project not 

only affect the final product quality, but also the time 
necessary to satisfy the requirements. A badly managed 
requirement can mean a loss for the project and can 
compromise it success, generating delays or the 
cancellation of projects.  

In distributed software development environments the 
challenges become even more significant. This paper has 
as objective to understand what kind of problems the 
project teams has faced when managing requirements in 
physically distributed environments and how these 
problems have been addressed. With this objective, a case 
study was conducted in a multinational organization with 
software development centers in Brazil, India and Russia, 
identifying the difficulties to analyze and to manage the 
requirements of a software project in this type of 
environment. The results are analyzed and the existing 
challenges are identified. Some of the solutions that are 
being implemented with the objective of minimizing the 
problems found are presented. Our contribution is in the 
identification of these problems and the addressing of the 
solutions. This paper has the following structure: section 2 
presents the theoretical base; section 3 describes the 
research method; section 4 describes the case study; 
section 5 discuss the results found in the case study; 
section 6 presents the conclusions, future studies and the 
research limitations. 
 

2. Theoretical Base 
 
2.1. Requirements Management 

 
Requirements engineering plays an important role in 

the software development. As said by [8], a requirement is 
the condition or capacity that a system that is being 
developed must satisfy. Therefore, the compliance with 
requirements determines the success or the failure of a 
project. The requirements are identified, registered, 
organized and verified during the project development. 
And that is what it called requirements management, a 
process that establishes and keeps the agreements firmed 



between the project team, users and customers related to 
the changes of requirements in a specific system.  

The literature states that the problems related with 
requirements engineering are one of the main reasons for 
software projects failures. This means that the final 
product does not have all the requirements gathering from 
users and customers [13]. Research identified that 70% of 
the requirements were difficult to identify and 54% were 
not clear and well organized. Also, it can be identified that 
[8]: 

•  Requirements are not easy to be described in 
words; 

•  There are different types of requirements in 
different levels of details; 

•  It can be impossible to manage the requirements if 
they cannot be controlled; 

•  Most requirements change during the project time. 
Therefore, it is not difficult to find errors in the 

requirement specifications, and they can have a large 
impact in the project costs. An estimative shows that 40% 
of the requirements generate rework during the project life 
cycle [13]. It is evident that the earlier a problem is 
detected and solved (especially during the requirements 
phase), many other problems are minimized in the 
following project phases. But in contrast, what it is 
observed is a short time for the requirements phase in a 
project, not considering the project type or environment 
where this phase occurs. 

 
2.2. Global Software Development (GSD) 
 

As said by [9], software process is defined by a set of 
activities, methods, practices and technologies that people 
and companies use to develop and to keep related 
software and products. The interest in the software 
process is based on the following premises: 

•  The software quality is strongly dependent on the 
quality of the process used in its preparation; 

•  The software process can be defined, managed, 
measured and improved. 

However, it is not a simple task to develop software 
using a well-defined development process. Such process 
has become increasingly more complex, whereas the 
software demands of companies increase according to the 
strategic importance for its operations. 

As part of the globalization efforts currently pervading 
society, software project teams have also become 
geographically distributed on a worldwide scale. This 
characterizes Global Software Development (GSD).  

Tools and technological environments have been 
developed over the last few years to help in the control 
and coordination of the development teams working in 
distributed environments. Many of these tools are focused 
in supporting procedures of formal communication such 
as automated document elaboration, processes and other 
non-interactive communication channels.  

Moreover, [3], [4], [5] and [10] point out that GSD is 
one of the biggest business-oriented challenges that the 
current environment presents under the software 
development process point of view. Many companies are 
distributing its software development process in countries 
such as India, Russia and Brazil. Frequently this process 
occurs in only one country, particularly in regions with tax 
incentives or critical mass in some skill or resource areas.  

Organizations search for competitive advantages in 
terms of cost, quality and flexibility in the area of software 
development [10], looking for productivity increases as 
well as risk dilution [7]. Many times the search for these 
competitive advantages forces organizations to search for 
external solutions in other countries (offshore 
outsourcing). This epitomizes the traditional problems and 
the existing challenges in GSD. 

 
2.3. The Capability Maturity Model (CMM) 
 

The Capability Maturity Model for Software (CMM or 
SW-CMM) has been developed by the software 
community with stewardship by the SEI (Software 
Engineering Institute). The first version was released in 
1992 and describes the principles and practices underlying 
software process maturity and is intended to help software 
organizations improve the maturity of their software 
processes in terms of an evolutionary path from chaotic 
processes to mature, disciplined software processes. The 
CMM is organized into five maturity levels [6]:  

1 - Initial: The software process is characterized as ad 
hoc. Few processes are defined, and success depends on 
individual effort and heroics; 

2 - Repeatable: Basic project management processes 
are established to track cost, schedule, and functionality. 
The necessary process discipline is in place to repeat 
earlier successes on projects with similar applications; 

3 - Defined: The software process is documented, 
standardized, and integrated into a standard software 
process for the organization for both management and 
engineering activities; 

4 - Managed: Detailed measures of the software 
process and product quality are collected. Both the 
software process and products are quantitatively 
understood and controlled; 

5 - Optimizing: Continuous process improvement is 
enabled by quantitative feedback from the process and 
from piloting innovative ideas and technologies. 

Except for Level 1, each maturity level is decomposed 
into several key process areas that indicate the areas an 
organization should focus on to improve its process [6]. 
 
3. Research Method 
 

This research is characterized as a study mostly 
exploratory, since the main research method was the case 



study. It is possible to justify the use of qualitative 
methods since it involves the study of the system 
development process in its real context, with description 
and the understanding of the state of the art in those 
situations where practice precedes theory [12]. 

 
4. Case Study 
 
4.1. Characterization of the Organization 

 
The organization is a global software development 

center (GDC) located in Brazil, owned by Dell 
Computers, a multinational organization with worldwide 
activities (one of the largest computer manufacturers in 
the world). This center was created in 2001 using 
incentives based on the Brazilian Law on Information 
Technology that stimulates companies located in the 
country to invest part of their earnings on research and 
development institutions providing tax exemption on 
manufactured products (IPI). The GDC aims to perform 
technological development for the organization in 
worldwide scope and since July of 2002 it is located 
inside of the technological park of a university in the 
South of Brazil (PUCRS). Many research projects are 
being developed, like the SW-CMM level 2 certification 
process monitoring and the study related to Global 
Software Development. All research projects are 
performed using both the organization professionals and 
the researchers and students of the host university.  

Figure 1 shows the context of this study: the 
organization acts in global software development 
environment, having the Microsoft Solutions Framework 
(MSF) and the SW-CMM model as base for the software 
development processes definition. The Brazil GDC is a 
SW-CMM level 2 certified organization since January of 
2003, with 2 years of work done to achieve this 
certification. 

OrganizationOrganization

Level 2Level 2

SWSW--CMMCMM

RMRM

SoftwareSoftware
ProjectsProjects

MicrosoftMicrosoft
SolutionsSolutions

FrameworkFramework

Global SoftwareGlobal Software
DevelopmentDevelopment

 
Figure 1. Organization context. 

4.2. Defining the two projects evaluated 
 
The objective of this case study is to analyze two 

projects developed in Brazil GDC, aiming at the 
identification of problems, advantages and disadvantages 
considering the requirements management (RM) in both 
projects in a geographically distributed context at the 
same time where the organization was working to obtain 
the SW-CMM level 2 certification. These projects were 
developed in the second semester of 2002.  

Project 1: The objective of this project was to develop 
a new version of a tool related to employee compensation 
for the human resources area of the worldwide 
organization. This project lasted nine months. According 
the classification proposed by [11], the project team, 
customer and users had the following distributed level: 

Project
Team

Cross Town
Scenario

Cross Town
Scenario

Customers

Users

Distance

Legend

Inter-Group

Intra-Group Intra-Group

Intra-Group

Same Physical
Localization

Scenario

Same Physical
Localization

Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

PP CC

UU

Same Physical
Localization

Scenario

Same Physical
Localization

Scenario

Cross Town
Scenario

Cross Town
Scenario

 
Figure 2. Project 1. 

The three members of the project were located in 
different buildings of the Brazilian unit. The customers 
and users were located in the organization headquarters in 
the U.S., each one in its building.  

 
Project 2: The objective of this project was to 

integrate and consolidate two versions (Latin American 
and Canadian) of an application of the manufacturing area 
into a single application. This project lasted one year. 
According the classification proposed by [11], the project 
team, customer and users had the following distributed 
level: 

Project
Team

Same Physical
Localization

Scenario

Same Physical
Localization

Scenario

Customers

Users

Distance

Legend

Inter-Group

Intra-Group Intra-Group

Intra-Group

Continental
Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

PP CC

UU

Continental
Scenario

Continental
Scenario

Continental
Scenario

Continental
Scenario

 
Figure 3. Project 2. 



The project team had thirteen members and was 
located in the Brazilian unit, in the same physical space. 
The customer’s team were distributed in a continental 
way, with members in Brazil, Mexico, Argentina, Canada 
and the U.S. The user’s team were located in Latin 
America and Canada. 
 
4.3. Case Study Results 

 
During the project development, considering the 

requirements management, many observations were done 
and interviews with the Program Managers were 
performed. The results are presented below. 

 
4.3.1. Project 1. The project was developed very well, 
even though there were both highlights and problems. 
Many solutions had been implemented in common 
agreement between the geographically distributed teams.  

Considering just the geographic team distribution, the 
following issues were found: 

 
Problems: 
- Communication problems in the project beginning; 
- Bad distribution of the activities between teams of 

Brazil and the U.S.; 
- Bad planning in the beginning of the project; 
- Inexistence of an evaluation of the impact that an 

activity would have for being done in a distributed way; 
- Videoconference resources had not been used. 
 
Highlights: 
- The initial problems had motivated the definition of 

working standards; 
- The distance facilitates the formalism; 
- The Brazil team spent six weeks in the U.S. for the 

knowledge transfer process and to start the requirements 
gathering; 

- The customer had visited Brazil to know the team 
and to approve the requirements specification document; 

- Social programs had been done during the trips; 
- Before the U.S. team came to Brazil, the Brazilian 

team finished all the pending activities aiming a good 
impression; 

- The customer was not American and had already 
have problems related to cultural differences; 

- A weekly meeting was performed with the customer. 
 
Considering the implementation of the SW-CMM 

Model level 2, there was a great contribution of the 
certification process to the use of the requirements 
management process in a geographically distributed 
environment. The following issues were found: 

 
 
 

Problems: 
- The U.S. team was not involved in the certification 

process. Therefore, the Brazilian team had an additional 
task to explain why each activity was done that way. 

 
Highlights: 
- The implementation of process based on SW-CMM 

Model helped in the organization and standardization of 
the activities between the geographically distant teams; 

- The director of the customer area in the U.S. gave 
total support in the understanding of the necessity to 
follow the process defined by the Brazilian team; 

- The U.S. team, although not involved in the 
certification process, absorbed all the knowledge related 
to the process. 

 
Considering the tools used beyond the meetings done 

physically in the same place, the teams communicated 
through e-mails, teleconferences and net meeting. 

Finally, the requirements phase, considered a critical 
phase in any project, was performed to satisfaction. This 
was possible because of the work that all teams did in 
order to minimize cultural differences, communication 
problems, trust problems and the work related to the SW-
CMM Model level 2 certification process. In the end, the 
project was delivered before the planned date. 
 
4.3.2. Project 2. The project was developed without 
problems. It had highlights and problems, and many 
solutions had been implemented in common agreement 
between the geographically distributed teams.  

Considering just the geographic team distribution, the 
following issues were found: 

 
Problems: 
- Lack of customer work standardization, due to its 

geographic distribution (teams in many countries); 
- Lack of trust in the project beginning related to the 

U.S. team, due to the competition between the teams; 
- The U.S. team did not have a well-defined process; 
- The time zone confused in the accomplishment of 

requirements gathering meetings; 
- Videoconference resources had not been used. 
 
Highlights: 
- The initial problems had motivated the definition of 

working standards; 
- The Brazilian Program Manager had participated 

since the beginning of the project, due to the project and 
the team sizes; 

- The requirements specification was standardized; 
- The Brazilian Program Manager spent one week in 

the U.S. in the project beginning; 
- Two members of the U.S. customer team had visited 

Brazil to know the environment and they were surprised; 



- The cultural differences had been absorbed 
delegating tasks in accordance with the profile and the 
culture of a team member (i.e. the Canadians were very 
good in something and the Americans in other things.); 

- Three weekly meetings were performed with the 
customer. 

 
Considering the implementation of the SW-CMM 

Model level 2, it was also verified a great contribution of 
the certification process and the use of the requirements 
management process in a geographically distributed 
environment. The following issues were found: 

 
Problems: 
- The U.S. team was not involved in the certification 

process. Therefore, the Brazilian team had an additional 
task to explain why each activity was done that way; 

- To be involved in a certification process caused a 
work overhead. 

 
Highlights: 
- The requirements management process was well 

defined and was completely incorporated by other teams; 
- The implementation of process based on SW-CMM 

Model helped in the organization and standardization of 
the activities between the geographically distant teams; 

- The use of process was mandatory and helped in the 
trust acquisition between the teams; 

 
Considering the used tools, beyond the meetings 

physically the same place, the teams had communicated 
through e-mails and teleconferences. 

Finally, the requirements phase, considered a critical 
phase in any project, was done very well, despite of some 
problems due to the project distribution. Many meetings 
were performed and some communications problems were 
identified, but all teams worked very hard in order to 
minimize the problems, mainly those problems related to 
cultural differences, communication problems and the 
work related to the SW-CMM Model level 2 certification 
process. With all this effort, the first phase of the project 
was delivered on time and without errors. 

 
5. Impacts of GSD in Requirements 
Management 
 

After the analysis of these two projects, it can be 
conclude that to manage requirements in a global software 
development context can become an arduous task if the 
process will not be well defined and if the teams will not 
be previously prepared to work in this scenario. Some 
studies [1], [2] and [13] point to problems such lacks of 
communication, cultural differences, collaboration, 
knowledge management, context sharing, lacks of contact 

between people and the lack and difficulty to use tools to 
give support to the activities in distributed environments.  

What was perceived in this case study is that all the 
work involving the SW-CMM Model level 2 certification 
in the Brazilian unit collaborated in a big scale to 
minimize some problems found in this scenario. The 
definition of a software development process based on the 
CMM model brought excellent results related to the 
distributed environments problems. Also, the teams were 
able to standardize all the work and to converge in a 
common understanding about the best approach to 
develop both projects. So, it can be concluded that many 
of the efforts spent in the SW-CMM Model level 2 
certification contributed to minimize problems like 
organization, standardization and, sometimes, 
communication. The training that was applied concerning 
soft skills minimized the distance impact and some 
problems related to these things (trust, cultural 
differences, etc). All these issues take to believe that, 
despite the existing difficulties in working this way, a 
good training is a key to success. 
 
5.1. Lessons Learned 

 
Many lessons were learned during the developing of 

these two projects, considering the requirements 
management phase. In the following table there is a list of 
the main lessons learned: 

 
Table 1. Lessons Learned. 

No. Lesson 
#1 Training the team in soft skills (trust, cultural 

differences, communication, collaboration, context 
sharing, knowledge management, etc.) is essential. 

#2 Work standardization is mandatory. 
#3 Frequent meetings with people geographically 

distant are very important to track the project. 
#4 A well-defined process is a key to success. 
#5 If it’s possible, travels can occur to meet each team 

involved in the project. 
#6 The time zone can act as an advantage and a 

disadvantage at the same time. 
#7 The use of tools like email, conference calls and 

videoconferences are very important. 
#8 To have a certification process like SW-CMM 

Model level 2 in parallel can increases the overhead, 
potentially leading to overload.  

#9 The SW-CMM Model level 2 certification process 
helped to define a standard way to work. 

#10 It’s very important to know about the people that 
your are working, considering the way to 
communicate, cultural differences, etc. 



6. Conclusions 
 

This paper advances the knowledge in the GSD area 
when identifying some important characteristics of the 
requirements management phase in a distributed 
environment, in parallel with a SW-CMM Model level 2 
certification process. As result, many important issues 
were identified and many lessons were learned. A 
comparison can be done between the two projects 
analyzed, in order to understand the way that each team 
did his work, considering the distribution level and the 
teams profile. 

This study enables a better understanding of the GSD 
area and the relationship between the project team, 
customers and users related to the requirements 
management phase. It is also applies in projects the 
standard created for comparison between different 
organizations [11], opening space for new research in this 
area. Due to the small number of case studies, the results 
cannot be generalized. In this phase of the study can be 
adopted the analytical generalization principle, proposed 
by (Yin 1994).  

This preliminary set of results that we are finding give 
us trustful indication that the search for greater formalism 
in the development process and the selective utilization of 
international pattern will provide full conditions to 
overcome the linguistic and cultural differences, 
particularly in requirements management, which is the 
focus of this paper. As contributions of this study, it can 
be highlighted the lessons learned and the main 
advantages in having training in soft skills and a well-
defined process to work in distributed environments. 
Moreover, a certification process in a quality model and a 
continuous software process improvement are very 
important to succeed.  

This study was not considered an analysis of the 
reasons than can take an organization to adopt strategies 
of distribution, nor the software development process by 
itself. Planned follow up studies in this topic will analyze 
the changes in a general way, considering not only 
requirements management, but also in all project phases.  
Some alternatives will be searched and solutions related to 
the GSD process identified, considering all difficulties 
and critical success factors like culture, communication, 
coordination, trust and cooperation.  

 

7. References 
 
[1] Damian, D., The study of requirements engineering in 
global software development: as challenging as important, 
Proceedings of International Workshop on Global 
Software Development – ICSE 2002, Florida, USA, 2002. 
 
[2] Evaristo, R., and Scudder, R., Geographically 
Distributed Project Teams: A Dimensional Analysis, 

Proceedings of the Thirty-third Hawaii International 
Conference on Systems Sciences, 2000. 
 
[3] Grinter, R. E., Herbsleb, J. D., and Perry, D. E, The 
Geography of Coordination: Dealing with Distance in 
R&D Work. ACM, 1999. 
 
[4] Herbsleb, J. D., Mockus, A.  Finholt, T. A., and 
Grinter, R. E, An Empirical Study of Global Software 
Development: Distance and Speed, IEEE, 2001. 
 
[5] Herbsleb, J. D., and Moitra, D., Global Software 
Development, IEEE Software, pp. 16-20. 
March/April/2001. 
 
[6] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and 
Charles V. Weber, "Capability Maturity Model, Version 
1.1," IEEE Software, Vol. 10, No. 4, July 1993. 
 
[7] McConnel, S., Rapid Development. Microsoft Press, 
1996. 
 
[8] Oberg, R., Probasco, L., and Ericsson, M., “Applying 
Requirements Management with Use Cases”, Rational 
Software White Paper, Cupertino, CA, 2000, pp. 3-5. 
 
[9] Pressman, R. S., Software Engineering: A 
Practitioner’s Approach. Fifth Edit, 2001. 
 
[10] Prikladnicki, R., Peres, F., Audy, J., Móra, M. C., 
and Perdigoto, A., Requirements specification model in a 
software development process inside a physically 
distributed environment, Proceedings of ICEIS 2002, 
Ciudad Real, Spain, 2002. 
 
[11] Prikladnicki, R., Audy, J., and Evaristo, R., 
Distributed Software Development: Toward an 
understanding of the relationship between project team, 
users and customers, to be presented in ICEIS 2003, 
Angers, France, 2002. 
 
[12] Yin, R. K, Case study research: design and methods, 
Sage, 1994. 
 
[13] Zowghi, D., Does Global Software Development 
Need a Different Requirements Engineering Process?, 
Proceedings of International Workshop on Global 
Software Development – ICSE 2002, Orlando, Florida, 
USA, 2002, 53-55. 
                                                 
i Paper developed in the Dell Brazil Global Development Center (GDC), 
sponsored by DELL Computers through the Brazilian Law on 
Information Technology. 



Communication Needs, Practices and Supporting Structures in Global Inter-
Organizational Software Development Projects 

 
 

Maria Paasivaara 
Helsinki University of Technology 

Software Business and Engineering Institute 
P.O.B. 9600, FIN-02015 HUT, Finland 

Maria.Paasivaara@hut.fi 
 

 
Abstract 

 
This paper presents communication needs, supporting 

structures and communication practices collected from 
global software development projects. The data was 
gathered by 32 interviews from seven global inter-
organizational projects. We identified four important 
communication needs:  problem solving, informing and 
monitoring, relationship building, and decision-making 
and coordination. Structures supporting communication 
were: organizational structure with communicating roles, 
partial synchronization of intra-organizational processes, 
and project level coordination. Communication practices 
are built upon and facilitated by these structures. A 
surprising finding was that companies rarely had any 
company level practices that were used in all inter-
organizational projects. Instead, the practices were 
formed by trial and error and were mainly project 
specific. 
 
1. Introduction 
 

Global inter-organizational software development 
projects, including outsourcing, subcontracting or 
partnership relations, are becoming increasingly common 
[4, 5]. The fact that such projects cross both country and 
organizational borders makes them extremely 
challenging. Advice for outsourcing and acquiring large 
projects or modules with well-defined requirements can 
be found in literature (e.g. [6]). However, in many new 
product development software projects a lot of 
uncertainties exist and subcontractors or partners are 
needed long before these uncertainties can be resolved 
and the requirements thoroughly specified. Therefore, in 
such projects parties usually cannot receive clear 
requirement specifications at the beginning. Instead, close 
cooperation and communication between parties are 
required during the whole project. Problems often arise, 
since practices needed for collaborating and 
communicating across distances and organizations are not 
well established. Companies often underestimate the need 

for specific practices when collaborating across distances, 
and start global inter-organizational projects without first 
planning how to work together. This often leads to quite 
problematic situations. Most of the problems are related 
to communication difficulties (e.g. [1, 7]), which mainly 
arise due to geographical distance, which e.g. limits the 
number of face-to-face meetings [2, 5]. 

Current literature does not provide much help for 
managers planning their projects; only a few articles can 
be found presenting practices used in case projects (e.g. 
[1, 3, 4]). We believe that collecting successful practices, 
especially to support communication could help managers 
better plan and execute global inter-organizational 
software development projects.  

In the research presented in this paper, we studied 
global, inter-organizational software projects, which used 
parallel development and had lots of uncertainties and 
interconnections between tasks. Since pure partnership 
projects were difficult to find, we concentrated on 
projects involving subcontractors, and focused on the 
structures and practices between the customer and the 
subcontractor(s) in parallel development situations. The 
projects chosen had also a global distribution aspect, 
either inside or between the companies. The focus of this 
study is illustrated in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

2 or 
more
companies

1 company

Same
location

Same
country

Different
countries

Geographical distance

Organisational
distance

Traditional
intra-
organisational
project

Locally
distributed
inter-
organisational
project

Global
inter-
organisational
project

Locally
distributed
intra-
organisational
project

Collocated
inter-
organisational
project

Global
intra-
organisational
project

= Focus of 
the study

2 or 
more
companies

1 company

Same
location

Same
country

Different
countries

Geographical distance

Organisational
distance

Traditional
intra-
organisational
project

Locally
distributed
inter-
organisational
project

Global
inter-
organisational
project

Locally
distributed
intra-
organisational
project

Collocated
inter-
organisational
project

Global
intra-
organisational
project

= Focus of 
the study

Figure 1. Project type classification 



The aim of this paper is to present communication 
needs, structures that support communication, and 
communication practices collected from globally 
distributed inter-organizational projects. 

 
2. Methodology 
 

The research presented in the paper is based on a 
multiple-case study approach [10]. Seven successful, 
Finnish companies that develop software were chosen for 
the study. Three of the companies developed software 
products, one customer specific systems and three 
embedded systems. All of these companies used software 
subcontractors and were expected to be quite experienced 
in inter-organizational software development. All 
companies, except one, were large and well-known in 
Finland. 

From every company we chose one globally and 
organizationally dispersed project that was studied 
closely. The chosen projects had sites or partners in two 
or three different countries. Four projects were distributed 
between continents, two of them between Europe and 
Asia, and two between Europe and North America. The 
rest three projects had a bit shorter inter-site distances, 
since all their sites were located in Europe.  

  We gathered data from 32 interviews. In each 
customer company we interviewed, if possible, both a 
partnership manager responsible for software 
subcontracting, and a process developer involved in 
subcontracting process development. From a chosen case 
project we interviewed project manager and, if possible, 
also one or more team members and a representative from 
the supplier company. We tape recorded all interviews, 
transcribed them and used Atlas/TI for grouping and 
analyzing the results. 
 
3. Results and discussion 

 
The most surprising result of our study was that 

companies did not have almost any clear structures and 
practices that were commonly used in all their inter-
organizational software development projects. The 
practices we encountered were mainly project specific 
and created by trial and error. The structures and practices 
found and presented in this paper might seem quite basic. 
However, in our experience, they are often not 
implemented in real life projects, even though a lot of 
problems could be avoided by using them. Next, the 
observed communication needs, supporting structures, 
and communication practices are presented. 
 
 
 

 

3.1. Communication needs 
 

We identified four main types of communication 
needs: 1) problem solving, 2) informing and monitoring, 
3) relationship building, and 4) decision-making and 
coordination. This classification is very close to 
classification presented by Stahl et al. [9] about 
communication in distributed product development. Our 
classification adds monitoring and relationship building. 
Monitoring is needed to give transparency of the project 
progress. Relationship building includes all kinds of 
social communication, which is especially important in a 
distributed project and therefore needs to be emphasized. 

The identified communication needs where found in 
all projects studied. However, the importance of each 
need and the suitable communication practices depended 
on the type and phase of the project. The most important 
finding was that communication needed for problem 
solving was almost totally forgotten when planning 
projects. This type of communication was needed 
especially in projects involving a lot of uncertainties, 
since problems demanding communication just cannot be 
totally avoided. 

The purpose of this communication need classification 
is to bring out communication needs that managers should 
take into account when planning their own distributed 
projects. Next, each communication need is briefly 
discussed. 

 
3.1.1 Problem solving. Problem solving communication 
is easily forgotten in project planning, even though it is 
commonly needed in distributed projects, especially when 
facing a lot of uncertainties, e.g., concerning new 
technologies. If channels for problem solving 
communication are not agreed upon at the beginning of 
the project, it might take a long time before problems are 
solved and this delays the whole project. If there does not 
exist a suitable communication practice, project members 
will ask around, and hopefully find a person who can help 
them, but a lot of time and energy is lost.  
 
3.1.2 Informing and monitoring. The customer 
normally remembers to monitor how the supplier’s work 
is progressing, even though it is difficult if only time 
reports are used. However, the supplier’s personnel and 
other distant sites would also like to get information about 
the progress of the whole project. This information 
would, besides helping personnel in distant sites to 
accomplish their tasks, motivate them, e.g., to keep-up the 
schedule, when they know why it is important. For a 
customer it is also very easy to forget to inform supplier 
about decisions and changes made, or new documents 
produced. The informing and monitoring should happen 
in both directions from the customer to the supplier and 
the other way around. 



Besides informing, suppliers also expect feedback 
from their work, e.g., about the quality of the work. They 
would like to get comments also when they are doing 
something right, not only when things go wrong. 

 
3.1.3 Relationship building. It is easier to communicate 
with a person that you have met at least once. Therefore, 
face-to-face meetings are crucial, especially in the 
beginning of the project. These meetings facilitate later 
electronic communication. Moreover, it is important that 
distant sites and companies have ”faces”. Otherwise they 
are easily forgotten and, e.g., their questions might not be 
regarded as important and urgent to answer. 

Building a good relationship with suppliers requires 
also that they are treated more like partners and experts in 
their field, not like second class citizens. Normally, even 
suppliers want to do high quality work. 

 
3.1.4 Decision making and coordination. Coordination 
and decision making is in a networked project 
concentrated to a network level steering group, the project 
mangers and the team level meetings. All these should 
take part of the responsibility. Define what kind of 
decisions each of them can make and how the whole 
project is informed about those decisions. 

 
3.2. Supporting structures 
 

We identified tree aspects that create supporting 
structures for an inter-organizational project: 1) a clear 
organizational structure with communicating roles, 2) 
partial synchronization of intra-organizational processes, 
and 3) structures for project level coordination (Table 1).  
 

Table 1. Supporting structures 
Structure Actions Support for 

communication 
Organizational 
structure with 
communicating 
roles 

- Create roles 
- Link 
communicating roles 
between 
organizations  
- Make the 
organization chart, 
with roles and 
contact info easily 
available 

- Roles include 
communication 
requirements and 
identify which roles 
need to communicate 
with each other between 
companies 
- Roles and the 
organization chart make 
it easier to know whom 
to contact 

Inter-
organizational 
process 

- Synchronize the 
main process 
milestones between 
organizations 
- Use iteration 
cycles of similar 
length and frequent 
builds 

- Milestones 
synchronize 
communication 
- Several iteration cycles 
and builds create 
transparency, and 
facilitate follow-up and 
communication 

Project level 
coordination 

- Create a project 
level steering group 
with members from 
all organizations and 
sites 
- Arrange inter-
organizational 
groups with weekly 
(teleconference) 
meetings 

- Meetings (face-to-face 
/ video- / 
teleconference) facilitate 
problem solving and 
decision making, they 
provide transparency 
and facilitate later 
electronic 
communication 

 
When these structures are planned and implemented 
carefully and used constantly during a project, they 
support work and communication. Next, we presented the 
structures in more detail. 
 
3.2.1 Clear organization structure with 
communicating roles. Creating roles, assigning the roles 
to team members and indicating which roles need to 
communicate with each other between companies, was a 
successful practice and it also stabilised the project 
structure. Defined roles make the inter-organizational 
project structure more clear to all participating team 
members and helps them to find the correct person to 
contact. 

Each role description includes tasks to perform, 
decision-making rights, responsibilities, and identified 
communication contacts. The roles and their descriptions 
can be similar in all projects. Each project chooses the 
roles needed and names persons to the roles. At the 
beginning of a project it is easier to give team members 
roles than many separate tasks. Moreover, it is important 
that some roles have comparable roles at the customer’s 
and the supplier’s side. These roles take care of tasks 
demanding a lot of communication between companies. 

At the management level in both companies there 
could be one named person, e.g., a subcontracting 
responsible who communicates with the other company’s 
corresponding role about future projects, prices, 
infrastructure needs, etc. At the project level, project 
managers communicate on a daily basis. At the team 
level, there are often experts on both sides who need to 
communicate with each other, e.g., persons responsible 
for related modules, software architects, etc. 

  

Such a simple thing as an organization chart of the 
whole inter-organizational project was often missing. 
This kind of a chart makes it easier to find the correct 
persons to contact when questions emerge. A simple web 
page with information about project personnel, including 
names, roles, photos, and contact information can also 
help a lot. 

 
3.2.2 Partial synchronization of intra-organizational 
processes. Our study showed that it is possible for both 
customer and supplier to use their own development 
processes in inter-organizational projects. Only the main 



phases and milestones need to be synchronized between 
companies.  

Many of the projects we studied had iteration cycles 
and builds. In some project phases even weekly builds 
were used. Frequent iterations and builds were noticed as 
a very suitable practice for distributed use, since they 
prevented different sites and partners from developing 
totally incompatible parts for long time periods. Frequent 
iteration cycles also bring partners transparency of the 
work done in a project. However, if all parties do not 
have the same interval between builds, problems will 
arise. Therefore, frequent iterations and builds with cycles 
of similar length in every company and site can be 
recommended.  

 
3.2.3 Project level coordination. A project steering 
group at the inter-organizational level having members 
from all participating companies has been a good 
practice. It could meet, e.g., once a month and discuss 
important high level matters. This meeting can be either 
face-to-face or using video/teleconference. 
 
3.3. Communication practices  
 

The case companies did not agree upon 
communication practices at the beginning of their 
projects, a fact that caused problems later. Even many 
basic guides recommend doing a project communication 
plan first, e.g. the PMBOK Guide [8], but that just did 
not seem to be a common practice in our case projects. 
Especially the need for problem solving communication 
was huge in the case projects. However, agreeing about it 
was often neglected partly because anticipating when and 
who would need it seemed to be difficult. Other 
important, but neglected, needs were relationship building 
and monitoring communication between distributed team 
members. These communication gaps limited 
transparency and caused, e.g., team members not always 
knowing whom to contact and made following the 
progress of the project difficult. Next, communication 
practices related to each four types of communication 
needs are presented (Table 2). 

 
3.3.1 Problem solving. If a project does not have a 
suitable communication practice for problem solving, 
project members will ask around when they have 
questions, and might finally find a person who can 
answer their questions. After sometime one specific 
person, e.g. a system architect, might end up receiving a 
huge number of questions just because other team 
members have noticed that he or she can help them. 
However, answering questions and finding the answers 
takes time and this person’s own duties suffer easily. This 
practice is not a very good one, but many projects use it. 

Chat between developers was regarded as a very 
useful way of communicating in problem solving 
situations, since when chatting clarifying counter 
questions can be posed easily and chat session can be 
open all the time. 

Discussion lists about specific technological areas 
were used in some larger projects and were found helpful, 
since know-how and experiences might exist somewhere 
in a large project. 

Project wide mailing lists were used in smaller projects 
for asking questions. In an email questions asked need to 
be explained very carefully, otherwise readers do not 
understand questions and they have to send several mails 
asking clarifying questions before the question is 
understood correctly. 

 
3.3.2 Informing and monitoring. Weekly meetings are a 
good arena in which to inform and monitor the project 
progress in both directions, from the customer to the 
supplier and the other way around. Team level weekly 
face-to-face meetings are often difficult to arrange in a 
distributed project, therefore, e.g., video- or 
teleconferences have been a very good alternative. 
Weekly meetings should be arranged among a group 
small enough, e.g., a project team or a subteam, to be 
efficient. It is important that everyone participates. The 
length of these meetings vary, half an hour can be 
enough. Inter-organisation representation is needed in 
these meetings, if there are dependencies across 
companies. The agenda could concentrate on tasks done, 
tasks to be done, problems and open issues. In a larger 
project subteam leaders could have their own meeting to 
get information about other teams and the whole project 
progress. 

 
Table 2.  Communication needs and practices 

identified 
Communication 
need 

Important Practices 

Problem solving - Often neglected -> 
lack of answers 
delays the project 
- Organization chart 
and roles help to 
find the correct 
person to contact 

- A person who “solves 
problems” 
- Mailbox for questions 
- Chat between 
developers 
- Discussion lists 
- Project wide mailing 
list with well explained 
questions 

Informing and 
monitoring 

- Follow-up in both 
directions, inform 
also the 
subcontractor 
- Customer should 
comment all points 
in the follow-up 
report 

- Weekly meetings 
inside a subgroup 
(teleconference) 
- Follow-up reports 
including tasks done 
open questions, 
problems, and future 
outlook.  

Relationship 
building 

- Give a “face” to 
distant sites 
- All communication 

- A common kick-off 
meting 
- Circulating meetings 



affects relationship 
building especially 
face-to-face 
meetings  

or trainings 
- Planning / problem 
solving meetings 

Decision making 
and coordination 

- Define the correct 
forum for different 
type of decisions  
- Inform about 
decisions 

- Network level steering 
group meetings 
- Weekly project/team 
level meetings 

 
3.3.3 Relationship building. A common kick-off 
meeting for the whole project or a sub-project is often a 
good idea. If it is impossible to arrange due to large 
project size and long distances, you should arrange other 
face-to-face meetings for important communication link 
persons. For example, project architects or other key 
persons can go to the supplier’s site to train them, or 
some supplier’s key persons can be invited to the 
customer’s site for training or a short collocated working 
period. When major problems arise they are best solved 
face-to-face. 
 
3.3.4 Decision making and coordination. In an inter-
organizational project coordination and decision making 
is concentrated to an inter-organizational steering group, 
project managers and weekly team meetings. All these 
should take part of the responsibility. Define what kind of 
decisions each of them can make and how the whole 
project is informed about those decisions. 
 
4. Summary and conclusions 

 
This paper presented communication needs, structures 

that support communication, and communication 
practices collected from globally distributed inter-
organizational software development projects. The most 
surprising result was that case companies, even though 
successful in their field, did not have clear structures and 
practices that were commonly used in all inter-
organizational projects. The practices encountered were 
mainly project specific and created by trial and error. The 
structures and practices found and presented in this paper 
might seem to be quite basic. However, in real life 
projects a lot of problems could probably be avoided by 
using them constantly. For example, the case companies 
did not agree upon communication practices in the 
beginning of their projects, which caused them problems 
later. Especially the need for problem solving 
communication was recognized to be huge in the case 
projects, but agreeing about it was often neglected. Other 

important, but neglected, needs were relationship building 
and project monitoring communication between 
distributed team members.  
 
5. Future work 

 
In the future we plan to extend this study and 

concentrate especially on communication, since it seems 
to be the biggest problem and is related to almost 
everything in global software development. We plan to 
study more projects and collect successful communication 
patterns and practices used in them. Furthermore, we plan 
to classify the communication patterns and practices 
according to projects type and communication needs. This 
collection should help managers choose suitable 
communication practices for their projects.  
 
6. References 
 
[1] R.D. Battin, R. Crocker, J. Kreidler, and K. Subramanian,  
“Leveraging resources in global software development”, IEEE 
Software, March/April 2001, pp. 70-77. 
[2] E. Carmel, and R. Agarwal, “Tactical approaches for 
alleviating distance in global software development”, IEEE 
Software, March/April 2001, pp. 22-29. 
[3] C. Ebert, and P. De Neve, “Surviving Global Software 
Development”, IEEE Software, March/April 2001. pp. 62-69. 
[4] R. Heeks, S. Krisna, B. Nicholsen, and S. Sahay, “Synching 
or sinking: global software outsourcing relationships”, IEEE 
Software, March/April 2001, pp. 54-60. 
[5] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “An 
Empirical Study of Global Software Development: Distance and 
Speed”, Proceedings of the 23rd International Conference on 
Software Engineering, ICSE 2001. Pages, 81-90. 
[6] IEEE Recommended practice for software acquisition, 
Institute of Electrical and Electronics Engineers, Inc. 1994 
[7] A. Mockus, and J. Herbsleb, “Challenges of Global Software 
Development”, Proceedings of the Seventh International 
Software Metrics Symposium, METRICS 2001. IEEE. Pages, 
182-184. 
[8] Project Management Institute, A Guide to the Project 
Management Body of Knowledge (PMBOK Guide), 2000 
Edition. 
[9] J. Stahl, S. Killich, and H. Luczak, “Co-ordination, 
Communication, and Co-operation in Locally Distributed 
Product Development”, Proceedings of the 5th International 
Product Development Management Conference, Como, Italy, 
May 25-26. 1998, pp. 947-959. 
[10] R.K. Yin, Case Study Research, Designs and Methods, 
Sage Publications, Thousand Oaks, California, 1994.

 



 

Modeling Coordination Costs Due to Time Separation  
in Global Software Teams  

 
J. Alberto Espinosa and Erran Carmel 
American University, Washington DC 

Kogod School of Business 
alberto@american.edu; carmel@american.edu 

 
ABSTRACT 

Research to date has not attempted to model 
coordination in global software teams. We formulate a 
preliminary collaboration model for a dyad to help us 
understand the consequences of time separation. We first 
describe the model and its theoretical foundations and we 
then evaluate the model by simulating several thousand 
observations and running regression models to inspect the 
effect of different variables on coordination costs. We then 
make suggestions for further extension of the model to 
include more complex scenarios with multiple 
collaborators and fewer assumptions.  Our evaluation 
shows that the consequences of time separation are 
complex and that we need to understand them well before 
we can make claims about coordination outcomes in 
larger software teams that are separated by time zones. 

1. Introduction 
New team configurations are increasingly carried out 

across global locations and time zones [1]. Such complex 
configurations have led to interest in the effect of distance 
on coordination in global software teams (GSTs). 
However, difficulties due to geographic dispersion often 
correlate with those of time zone differences. With some 
exceptions [2, 3], most research has not distinguished 
between the two.   So, our objective in this paper is to 
present a model that represents coordination costs in 
which we distinguish distance from time separation. In 
this article we begin to lay the groundwork for a more 
rigorous inquiry on this topic. We introduce a 
mathematical model of interdependent work between two 
actors and measure the coordination costs of work that 
moves from one actor to another in all 4 conditions of the 
classic time-place matrix  (Figure 1) [4]. We simulate 
different conditions using this model.  

2. Time separation 
Team members are separated by time when there are 

differences in working hours, time zones, and/or working 

  
New York - India

(10.5 time zones away)

Chicago - Mexico City Same office,

(0 time zones away) same work hours

Different Same

Ti
m

e
Place

D
iff

er
en

t
Sa

m
e

Co-located shift work

Figure 1: The time-place matrix with examples 
rhythms that reduce the time available for same-time (i.e., 
synchronous) interaction [2, 3]. For example, teams 
separated on an east-west axis have fewer overlapping 
work hours than teams separated on a north-south axis [5], 
making it more difficult for the former to coordinate and 
communicate. Even co-located teams can be separated by 
time if their members work in different shifts.  

 Effective coordination is strongly influenced by 
communication, but human beings communicate more 
effectively when in close proximity [6]. While geographic 
distance affects coordination, coordination problems are 
often the result of time separation, which makes it difficult 
for members to interact synchronously. Even small time 
zone differences can bring surprising difficulties [7]. In 
the absence of face-to-face communications, GSTs have a 
menu of asynchronous and synchronous technologies to 
choose from. Media Richness theory [8] suggests that rich 
communication media (face-to-face, video conference) is 
more effective, but when GSTs are separated by time 
zones they are forced to use less rich, asynchronous media 
(e-mail, voice-mail). 

The degree of task dependency plays a key role on 
coordination. When two team members with tightly 
coupled task dependencies collaborate, time zone 
differences can disrupt coordination. Not being able to 
pick up the phone and call other members can slow down 
a group’s progress. Frequently, requests are not clear, 
requiring further communication. When team members 
are working face-to-face, the clarification may be nearly 
instantaneous. However, when team members are distant, 



clarification may introduce delay.  Furthermore, unclear 
communication exposes the team to “vulnerability costs” 
– e.g., misunderstandings, rework. On the other hand, 
time zone differences could actually be beneficial. For 
example, Follow-the-sun work [9] takes advantage of time 
zone differences to speed up project work.  A team in 
New York can hand off work at the end of their day to be 
continued by team members in India, who can then 
continue the task while the New York staff sleep 
overnight. In fact, GSTs often adjust their work to 
overcome time zones differences – e.g., overlap work 
hour windows; liaisons whose work hours are the same as 
the other site; batch work delivered toward the end of the 
day; and periodic travel to interact face-to-face.  

3. The model 

3.1 Theoretical foundations 
Coordination is “the management of dependencies” in 

a task.  If work can be done independently, then there is 
no need to coordinate. Conversely, when two members 
carry out a task with tightly coupled dependencies, these 
dependencies need to be managed either by structuring 
task activities or by communicating [10-12]. However, 
coordination theory [13-15] thus far has not taken into 
account delays resulting from time zones differences.  We 
focus in this article on coordination via communication 
and try to begin to fill this gap by formulating a simple 
dyad model, influenced by Malone [13]. However, our 
model departs from his in a number of accounts:  

First, Malone’s model analyzes different coordination 
structures based on different patterns of communication 
and decision-making that a set of actors can use.  Our 
model employs only two actors that need to carry out a 
task with tightly coupled dependencies. Second, Malone’s 
model assumes that actors employ their production 
capacities optimally and that different agents have 
different capacities to produce.  We don’t make such 
assumption in our model because there are only two 
actors, one (R) who requests a task from a task provider 
(P) because of a dependency (i.e., R cannot continue the 
task until P carries out the requested task). Third, 
Malone’s model does not incorporate time and distance 
separation among actors, while we specifically model 
such time and distance separation.  

3.2 Model Formulation  
There are only two actors in our simple dyadic model, 

R and P. R has a workflow dependency with P.  A single 
collaboration act in this context consists of the following: 
(1) R communicates a request to P; (2) P carries out the 
requested task; and (3) P communicates completion of the 
task to R.  The model is constructed with cost as the 

dependent variable which, in turn, is composed of three 
costs: (1) Production costs – due to the actual time 
necessary to complete the task; (2) Coordination costs – 
due to delay; and (3) Vulnerability costs – due to unclear 
messages. A message can be unclear, with some 
probability, which can lead to one of two conditions: (a) a 
request for clarification, which results in an additional 
cost due to delay; and (b) rework, which leads to both 
additional production costs and a cost of further delays.  

We developed different formulas for the 8 different 
possible task conditions (2x2x2), depending on whether 
the work time overlap occurs at the beginning or end of 
the requestor’s work day; whether the request arrives 
during or outside of the overlapping time; and whether the 
task is completed and notified during or outside of the 
overlapping time. For simplicity of illustration (the 
formulas don’t change too much), we only analyze the 
model with overlapping time occurring at the end of R’s 
work day.  We model time separation based on an overlap 
index [5, 16] between the two actors.  In Appendix A we 
present the resulting conditions and formulas in detail.  

3.3 Assumptions  
We made a number of simplifying assumptions to the 

model in order to test its robustness, which we can later 
relax to evaluate more complex collaboration models: (1) 
A task is composed of individual and shared portions. 
Actors are equally capable of doing their individual tasks. 
The shared portions contain dependencies that are 
coordinated via communication; (2) Coordination failures 
are due to unclear communications, creating vulnerability 
costs (i.e., further communication to clarify the message 
or re-work); (3) The probability of unclear messages 
increases as the richness of the communication medium 
used decreases.  Only one clarification message is 
necessary to resolve unclear messages; (4) The task is a 
software task  and the production object is digital and it 
can be sent across a network in 0 time units.  Similarly, 
messages sent arrive instantly; (5) There is only one 
synchronous and one asynchronous link between R and P; 
(6) The task is high priority and time constrained; (7) Non 
face-to-face communication is conducted electronically, 
and when working hours overlap actors prefer to 
communicate synchronously (e.g., telephone, video 
conference); they communicate asynchronously (e.g., e-
mail, shared databases) otherwise; (8) All tasks requested 
by R are immediately accepted and carried out 
competently by P and there is no parallel multi-tasking. 
Once P has full information about the requested task, P’s 
production costs are the same regardless of time or 
distance separation; (9) Time is measured from R’s 
perspective.  If P is processing a task during R’s non-work 
hours it has no time delay consequences for R. 

  



4. Model evaluation 
We evaluated the robustness of the model with a 

simulation of 11,000 observations and then exploring the 
effect of the timing of requests, task duration, and time 
overlap on coordination and vulnerability costs when the 
overlap occurs at the end of the requestor’s work day. The 
request time (Rt) variable was generated randomly from a 
uniform distribution (0,1), with 1 being a full work day.  
The task duration (Tt) variable was also generated 
randomly from a normal distribution with an average of 
0.25 (1/4 of a work day) and a standard deviation of 0.1. 
We fixed all other parameters as follows (see Appendix 
A): Cla=$100 and Cls=$500 per day; Cma=$10 and 
Cms=$50 per message; Cd=$1,000 and Cp=$1,000 per 
day. These costs are arbitrary, but they serve the purpose 
of helping illustrate and evaluate the model.  Further 
evaluations of this model will incorporate variable costs.  

The probability that a request was unclear was fixed at 
10%, 30%, 50% and 70% for the four conditions, 
respectively, face-to-face, distributed, time-separated and 
time/distance separated. These probabilities are arbitrary 
but based on the expectation that, as the richness of the 
communication media diminishes the probability of 
unclear messages increases. The probability differences 
are purposefully wide to make their effects on 
coordination costs more noticeable. Also, there is a 
probability of 30% that unclear messages will lead to re-
work and 70% that it will simply lead to a request for 
further clarification with no re-work.  If re-work is 
necessary, it is assumed that, on average, 30% of the work 

completed will have to be redone, thus increasing 
production costs. Finally, we assume one request per day. 

 

 Coordination Costs Vulnerability Costs
Main Effects + Interaction Main Effects + Interaction

Variable Coefficient P-Value Coefficient P-Value Coefficient P-Value Coefficient P-Value
Constant -390.64 <0.001 -409.64 <0.001 -55.18 <0.001 -69.65 <0.001
Request Time -353.81 <0.001 -49.51 <0.001 -133.62 <0.001 -27.13 <0.001
Task Duration 721.50 <0.001 942.53 <0.001 71.88 <0.001 9.80 0.143
Overlap Index -159.64 <0.001 -2.51 0.492 -135.13 <0.001 0.21 0.923
Distributed 594.14 <0.001 600.09 <0.001 24.71 <0.001 26.82 <0.001
Time Separated 208.39 <0.001 205.34 <0.001 70.91 <0.001 75.21 <0.001
Distributed & Time Separated 749.31 <0.001 759.58 <0.001 123.90 <0.001 122.93 <0.001
ReqTime x TskDur -321.26 <0.001 -26.33 0.020
ReqTime x Overlap 471.20 <0.001 255.99 <0.001
TskDur x Overlap 496.89 <0.001 -28.37 0.009
ReqTime x Distr 5.87 0.279 4.79 0.136
ReqTime x TimeSep -610.74 <0.001 -170.78 <0.001
ReqTime x Distr&Time -608.48 <0.001 -257.61 <0.001
TskDur x Distr 1.52 0.922 3.87 0.676
TskDur x TimeSep -416.15 <0.001 87.36 <0.001
TskDur x Distr&Time -454.54 <0.001 154.38 <0.001
Overlap x Distr 9.32 0.071 4.14 0.177
Overlap x TimeSep -366.62 <0.001 -235.66 <0.001
Overlap x Distr&Time -262.92 <0.001 -305.90 <0.001
R-sq 0.854 0.974 0.571 0.901
R-sq Change 0.120 0.330
R-sq Change P-Value <0.001 <0.001  

Table 1: Regression Analysis Results 

Regression results from Ordinary Least Squares 
models (Table 1) suggest that the model is robust and that 
it behaves as expected. Both models were run first 
including only main effects and then adding interaction 
variables. The interaction variables significantly increased 
the explained variance (R2) in both models, suggesting 
that these interaction terms are important. The base 
models with only main effects yielded intuitive and 
similar results.  Both, coordination and vulnerability costs 
increase with longer tasks and with time and/or distance 
separation. Both costs decrease when requests come later 
in the day (i.e., closer to overlapping hours) and when 
there are more overlapping hours in the day.  The 
coefficients are larger in absolute value for coordination 
costs than for vulnerability costs, but this difference will 
change as we change cost parameters in the future. 

Most main effects remained significant and retained 
their signs when the interaction variables were added, 
with a few exceptions.  The main effect of overlapping 
hours became non-significant in both models and the main 
effect of task duration became non significant in the 
vulnerability costs model.  The sign and significance 
levels of the interaction coefficients for the overlap 
variable indicate that the amount of overlapping time has 
a significant effect for teams that are separated by time or 
by time-and-distance, as one would expect, but, naturally, 
it does not have an effect on face-to-face and distributed-
same time conditions.  This is an expected result since 
these teams have full overlap in their working hours.   

  



The negative interaction between task request time and 
time separation suggest, intuitively, that issuing task 
requests closer to overlapping working hours reduces 
coordination costs when actors are separated by time. 
Interestingly, task duration increases coordination costs, 
as expected, but this effect diminishes with time 
separation, because the task provider T can work during 
the requestor R’s off work hours. This is consistent with 
the benefits of “follow-the-sun” noted in Section 2. The 
negative interaction between request time and task 
duration suggest that issuing task requests closer to 
overlap time reduces coordination and vulnerability costs, 
but more so for tasks of longer duration.  On the other 
hand, the positive interaction between request time and 
work overlap time suggests that the benefits of making 
task requests later in the day are diminished as the work 
overlap hours increase.  In time-separated work contexts, 
request timing is critical in reducing coordination and 
vulnerability costs, but this becomes less important with 
less time separation.  Finally, the interaction between task 
duration and overlap time was positive for coordination 
costs and negative for vulnerability costs.  This suggests 
that coordination costs increase with task duration, 
especially when there is less time separation (i.e., more 
overlap), but this is offset by lower vulnerability costs 
because it is less costly to clarify miscommunication when 
there is less time separation. 

5. Discussion and future research 
Coordination and vulnerability costs in time-

separated contexts are affected by the time of the day 
when a task is requested but this effect diminishes as 
overlapping work time increases.  This and the other 
results discussed in the prior section suggest that the 
model we have formulated in this paper is robust. 
Collaborations in which more than two actors are 
separated by time are much more complex than the model 
we have presented here.  But the robustness of our dyadic 
model gives us confidence that this model can be 
expanded to more complex coordination structures with 
more variable cost and operational parameters. For 
example, delay costs are higher where time-to-market is 
critical.  On the other hand, production costs may be much 
higher in situations where software production requires 
expensive resources (e.g., sophisticated testing labs, 
scarce expertise). Other interesting manipulations include: 
giving actors a choice of communication technologies, 
each with different costs, and then evaluate the tradeoffs 
among coordination, vulnerability and communication 
costs; assessing new collaboration tools by reducing the 
probability of unclear messages due to better 
communication effectiveness; actors could also reflect 
different production costs (as is typical today with 

offshore work).  In sum, we plan to expand our model by 
progressively relaxing assumptions.   

6. References 
[1] Orlikowski, W., Knowing in Practice: Enacting a Collective 
Capability in Distributed Organizing. Organization Science, 
2002, 13(3): p. 249-273. 
[2] Espinosa, J.A., et al., Team Boundary Issues Across Multiple 
Global Firms. Journal of Management Information Systems, 
Spring 2003, 19(4). 
[3] Watson-Manheim, M.B., K. Crowston, and K.M. Chudoba. A 
New Perspective on Virtual: Analyzing Discontinuities in the 
Work Environment. in 35th. Hawaiian International Conference 
on System Sciences, 2002, Big Island, Hawaii: IEEE. 
[4] Bullen, C. and J. Bennett, Groupware in Practice: An 
Interpretation of Work Experiences, in Groupware and 
Computer-Supported Cooperative Work: Assisting Human-
Human Collaboration, R. Baecker, Editor, 1993, Morgan 
Kaufman Publishers: CA. p. 69-84. 
[5] O'Leary, M.B. and J.N. Cummings. The Spatial, Temporal, 
and Configurational Characteristics of Geographic Dispersion 
in Teams. in Presented at the Academy of Management 
Conference, 2002, Denver, Co. 
[6] Kiesler, S. and J.N. Cummings, What Do We Know About 
Proximity in Work Groups? A Legacy of Research on Physical 
Distance, in Distributed Work, P. Hinds and S. Kiesler, Editors, 
2002, MIT Press: Cambridge, MA. p. 57-80. 
[7] Grinter, R.E., J.D. Herbsleb, and D.E. Perry. The Geography 
of Coordination: Dealing with Distance in R&D Work. in 
International ACM SIGGROUP Conference on Supporting 
Group Work (Group 99), 1999, Phoenix, Arizona: ACM Press. 
[8] Daft, R. and R. Lengel, Organizational Information 
Requirements, Media Richness and Structural Design. 
Management Science, 1986, 32(5). 
[9] Carmel, E., Global Software Teams, 1999, Upper Saddle 
River, NJ: Prentice Hall. 
[10] March, J. and H. Simon, Organizations, 1958, John Wiley 
and Sons. 
[11] Thompson, J., Organizations in Action, 1967, McGraw-Hill. 
[12] VanDeVen, A.H., L.A. Delbecq, and R.J. Koenig, 
Determinants of Coordination Modes Within Organizations. 
American Sociological Review, 1976, 41(April), p. 322-338. 
[13] Malone, T., Modeling Coordination in Organizations and 
Markets. Management Science, 1987, 33(10), p. 1317-1332. 
[14] Malone, T. and K. Crowston. What is Coordination Theory 
and How Can it Help Design Cooperative Work Systems. in 
Computer Supported Collaborative Work, 1990, ACM Press. 
[15] Malone, T. and K. Crowston, The Interdisciplinary Study of 
Coordination. ACM Computing Surveys, 1994, 26(1), p. 87-
119. 
[16] O'Leary, M.B. Varieties of Virtuality: Separate but not 
Equally. in FIU Workshop on Distributed Work and Virtuality, 
2001, Miami, Fla. 
 

  



Appendix A: Model Variables and Formulas 
 

When overlapping working hours are at the end of R's workday

1. R(Oe)C(Oe) Request comes during overlapping hours and is also finished during overlapping hours

Oe

Rt
R
P

Tr=0 Tt

2. R(Oe)C(after-Oe) Request comes during overlapping hours, but is finished after overlapping hours

Oe

Rt
R
P

Tr=0 Tt

3. R(bef-Oe)C(after-Oe) Request comes before overlapping hours and is finished after overlapping hours

Tr Oe

R
P Rt

Tt

4. R(bef-Oe)C(Oe) Request comes before overlapping hours and is finished during overlapping hours

Tr Oe

R
P Rt

Ta=0
Tt  
 

 

  



 
Building Trust in Global Inter-Organizational Software Development Projects: 

Problems and Practices 
 
 

Jarkko Pyysiäinen 
Helsinki University of Technology 

Software Business and Engineering Institute 
P.O.B. 9600, FIN-02015 HUT, Finland 

Jarkko.Pyysiainen@hut.fi 
 
 

Abstract 
 
This paper explores problems and potential practices 

for trust building in global inter-organizational software 
development networks. The concept and traditional 
sources of trust are briefly reviewed, and the special 
problems on trust building in networks are analyzed on 
the basis of the theoretical framework. Our empirical 
findings from nine global software development networks 
show that such networks are facing problems because the 
traditional sources of trust do not exist in networked 
conditions. In such networks, trust may emerge 
occasionally, but maintaining it seems especially 
challenging. Consequently, building and maintaining 
trust in globally and organizationally dispersed networks 
seems to require supportive practices that compensate the 
deficient sources of trust. On the basis of our empirical 
data, some successful practices in trust building are 
outlined.  

 

1. Introduction 

Global inter-organizational networks have become 
increasingly popular in software development [3]. Such 
networks may include, e.g., several subcontractors or 
partners working concurrently with customers across 
distances and relying primarily on communication 
technologies instead of face-to-face meetings. Work 
across teams and companies is rather interdependent than 
independent and the need to orchestrate the work across 
the whole network is often great. This kind of 
coordination of work in networks creates new challenges 
and demands: coordination is simply not possible based 
on such traditional features as direct face-to-face 
feedback, common experiences, similarity of 
backgrounds and co-located decision making [4]. Instead, 
alternative ways for facilitating cooperation and 
communication must be utilized. In the field of 

organizational behavior a growing attention has been paid 
to the role of trust in such processes: a growing body of 
literature demonstrates the important benefits of trust for 
organizations and their members [1,5,8]. Even more 
importantly, trust is seen as a necessary element in 
facilitating the functioning of networked organizations 
[4,7,11] and global software outsourcing relationships 
[2,9]. 

While on the one hand trust building seems to be a 
promising mechanism for overcoming many difficulties 
related to global software development, it may on the 
other hand be precisely the virtual and global contexts 
that constrain the development of trust between 
companies and teams [e.g. 4]. Lack of face-to-face 
interaction and informal communication seem especially 
troubling.  

The aim of this paper is to first present a theoretically 
motivated empirical analysis of the problems encountered 
in trust building in nine Finnish, global and inter-
organizational software development networks. Second, 
on the basis of the data successful practices in 
overcoming these problems in trust building are outlined. 

2. Theoretical framework 

2.1. Concept and sources of trust 

For the purposes of this study the concept of trust may 
be best understood as a relationship between parties, not 
as a property of an individual: trust prevails if each of the 
interacting parties acknowledges the right of the other 
parties to assess the competence and the intentions of 
their acts [11]. Trust prevails, if parties after this kind of 
assessment are willing to be vulnerable to – or cooperate 
with – each other based on the belief that the other is 
competent, open, concerned and reliable [8]. In this sense 
trustworthiness of an individual may be a source of trust 
for others, but trust is realized only in action. Without 
shared experiences trust is not likely to survive. 



This type of assessment of trust between parties also 
requires a dialogical, negotiating mode of 
communication. In addition, grounds for this kind of 
trusting orientation are likely to develop in organizational 
contexts, where work is evaluated and control located at 
the level of the joint project, not at the level of individual 
contributions. [11] When these antecedents are evaluated 
from the perspective of global software development 
networks, it seems that shared experiences at the network 
level may be rare, but that a negotiating mode of 
communication and evaluation of work at the level of a 
joint project are characteristic to some networks. 

According to Kramer [5] traditional sources of trust 
within organizations can be summarized as follows: 
Dispositional trust: Predispositions to trust or distrust 
others tends to be correlated with other personal 
orientations and styles. Certain features in the behavior of 
others become associated with stable expectations and it 
is possible to extrapolate from earlier trust-related 
experiences. 
History-based trust: Trust thickens or thins as a function 
of cumulative interaction. Individuals’ judgments about 
others’ trustworthiness are partly anchored on a priori 
expectations about others’ behavior, and these 
expectations change as subsequent experience either 
validates or discredits them. Reciprocity in exchange 
relations enhances trust while violation of reciprocity 
erodes it.  
Third parties as distributors: Third parties are important 
because of their ability to diffuse trust-relevant 
information via informal communication and gossip. On 
the basis of this kind of mediated information it becomes 
possible to transfer expectations of existing embedded 
relationships to newly formed ones. 
Category-based trust: Common categories function as 
vehicles for perceiving common identities and common 
goals. A shared membership in a salient category 
(woman, researcher) can provide basis for presumptive 
trust and a sense of familiarity. Membership in a category 
is associated with a tendency to attribute positive 
characteristics to other ingroup members. 
Role-based trust: often it is not so much the person in the 
role that is trusted but the system of expertise that 
produces and maintains role-appropriate behavior. In this 
sense trust can be seen also as depending on the system 
that is represented in the role – roles lessen the need for 
repeatedly negotiating trust when interacting with others. 
A related issue here is that serious failures of cooperation 
can occur if novel situations break down role-based habits 
e.g. in organizational crisis 
Rule-based trust: trust based on internalized rules rests 
not on an explicit contract but on socialization into the 
structure and practices of the organization. If socialization 

is high and common principles are well internalized, 
mutual trust can acquire a taken-for-granted quality. 

2.2. Developmental stages of trust 

Luhmann [6] has presented a useful distinction of the 
antecedent conditions for the development of trust. The 
development of trust can be seen as depending upon two 
previous stages, namely familiarity and confidence. All 
three stages represent qualitatively different modes of 
asserting expectations towards the behavior of others. 
Familiarity is the first necessary condition for the 
development of trust, because no stable expectations can 
be formed towards the strange, which remains mentally 
uncontrollable. The second condition is the stage of 
confidence, which depends in turn upon a certain amount 
of familiarity of the target. Confidence is based upon 
expectations of normal practices, standard operations and 
definite norms that are supported by sanctions. Confident 
expectations mean that no alternative ways of doing 
things are actively thought about; instead, a certain 
scenario is taken for granted. Finally, trust is the stage 
where open negotiation and active search for alternatives 
become possible, but only if the stages of familiarity and 
confidence are fulfilled and do not let the trusting parties 
down. [6, also 10]  

3. Data and methods 

The data was collected in an interview study that 
aimed at exploring working practices and problems in 
global inter-organizational software development 
projects. The focus of the study was on networked 
projects that involve at least two companies: a customer 
and a supplier. Nevertheless, most networks studied 
involved more than two organizational parties.  

The data was collected from nine distributed software 
development networks. In each case the customer 
company was Finnish, and all of them, except one, were 
large and nationally well known. Altogether eight 
customers, five subcontractors and ten projects were 
studied. The data consists of taped and transcribed 
thematic interviews of the project personnel and 
managers (N=44).  

Of the networks, four were developing software 
products, two developed bespoke systems, and three 
developed embedded systems. 

4. Results and discussion 

On the basis of the interviews it seems that most of the 
major problems in networked projects are related to 
communication and the arrangement of cooperation 
between companies. Due to problems in these areas, 



projects were easily delayed or even failed. In our 
interview study we noticed that companies were very 
interested in networked product and software 
development, but because of the fear of possible problems 
and the lack of concrete working procedures they were 
sometimes hesitant to start that kind of projects. 

Section 4.1 presents the results from the analysis of the 
problems encountered in trust building. The classification 
of problems is based on the framework of potential 
sources of trust presented in section 2.1. 

Section 4.2 outlines the practices found in interviews 
that proved to be useful in tackling the problems. These 
successful practices are classified according to the 
developmental stages of trust described in section 2.2. 

4.1. Problems in trust building 

4.1.1. Personal dispositions. The receiver did not always 
know how to interpret the messages (e.g. e-mail) from 
senders in different companies, because the personalities 
and interaction styles of parties remained ambiguous. 
Some persons preferred short-worded mails that went 
straight to the point, but if the receivers had never really 
got acquainted with the sender, they easily thought that 
the sender was not satisfied with their work or did not 
respect their ideas. Situations got worse, if receivers 
interpreted the messages as including unwarranted 
commanding functions, when after all the case in point 
was that the personal ways of expressing oneself in 
mediated communication differed so significantly. 
4.1.2. Common history. Because of the temporary nature 
of software development networks, the exchange of 
background information was often not sufficient, 
especially if companies had not properly planned and 
documented what kind of information would be required 
in each development phase. The companies often forgot 
to discuss the available documentation and whom to 
contact in specific issues. If clear organizational charts 
and face-to-face meetings were lacking, people did not 
get to know each other’s roles, responsibilities and 
competences. Thus people hesitated to spontaneously 
give and ask for help. In some cases customers made 
impossible demands to subcontractors, who lacked the 
required background information; as the subcontractor 
then presented their own solutions to the tasks, the 
customer claimed that the subcontractor was incompetent 
and had to redo the whole task. These kinds of violations 
of reciprocity led easily to a decline in trusting attitudes 
and motivation. 
4.1.3. Mediating third parties. In collocated projects 
tacit knowledge, positive experiences and reasons for 
successes and failures are spread automatically in various 
informal occasions and conversations increasing the 
awareness of the progress of the project and of possible 

sources of risk and opportunity. However, in the case of 
networks spontaneous transfer of knowledge via third 
parties was often blocked, because no mediating link 
persons between companies were available. Parties 
remained ignorant about reasons for delays in deliveries 
and testing. Similarly, the causes for changes and some 
troubling bugs remained unclear. This kind of uncertainty 
aroused suspicions about the positive intentions and 
motives of other parties, ending up in unwarranted 
accusations towards remote teams. The absence of 
mediating third parties also manifested as question 
overloads. When people did not know whom to ask for 
help, it was typically one salient key person (e.g. a system 
architect) who received a huge load of questions. In such 
cases the work of the contacted link person suffered 
heavily, and crucial information was left untransmitted.  
4.1.4. Shared category membership. One obvious 
problem was to create a sense of togetherness at the 
network level. In many cases, people from different 
companies did not actually feel that they were working 
towards a common goal. Rather, the sub-goals of each 
site tended to conflict with commitment to a common 
goal. Uncertainty existed concerning the limits of 
confidential information that should be withheld from 
other companies. When in doubt, team members preferred 
to withhold all information and not to exchange ideas that 
would have helped the progress at the whole network 
level. Further, when, e.g., subcontractors did not get 
feedback on the quality of their work and could not 
perceive how their contributions affected the progress of 
the whole project, it became even more difficult for them 
to identify with a common goal. As a consequence, the 
commitment of the subcontractor was weakened and in a 
couple of cases collapsed totally. Problems were raised by 
the mere dissimilarity of the deliverables coming from 
“alien” sites: in one case testers who encountered 
deficiencies in code coming from another site 
intentionally made impossible change requests and finally 
refused to test the code from that particular site.  
4.1.5. Predictable role behavior. No one of the studied 
networks had established role definitions at the level of 
the entire network. Companies may have had indicated 
roles in their internal processes, but at the network level a 
clear prediction of the behaviour of other people on the 
basis of their roles was not possible. Difficulties were also 
related, e.g., to the contested justification of decisions, 
because the roles did not suggest who had the right to 
decide on issues, especially at lower levels in the 
organization. Sometimes developers made confusing 
changes to the core modules of the product, even though 
that kind of tasks were not ascribed to them. At times 
information passed over crucial persons (e.g. an architect) 
because task dependencies were not reflected in the 
agreed communication relations between roles. 



4.1.6. Internalized common rules. It was quite 
surprising that such basic issues as common terms to be 
used in the development process were not always clearly 
stated. Similarly, some parties were for a long time 
ignorant of the true nature of the development process 
and development cycle in other companies. The lack of 
binding principles manifested, e.g., as lacking 
communication and change-request protocols. There was 
only seldom agreed reaction times to received mails, 
which caused confusions in communication. An unclear 
threshold for changes caused unnecessary and 
overlapping changes. 
4.1.7. Discussion. On the basis of the presented 
classification of problems in trust building it seems that 
the traditional sources of trust cannot properly function in 
networked conditions. There are simply very few natural 
sources of trust that would facilitate the cooperation 
between parties. Especially commanding communicative 
acts (e.g. giving orders, asking for help, delegating tasks) 
between parties may lead to difficult situations in absence 
of underlying trusting attitudes. In this sense, the building 
of trust in global software development is something that 
must be intentionally arranged and taken care of. 

4.2. Practices for successful trust building  

The interviewed companies had managed to establish 
some practices that proved to be successful in building 
trust. The practices were rather unsystematically 
implemented and, accordingly, the results for trust 
building were not optimal. 
4.2.1. Practices supporting the development of 
familiarity. A common kick-off meeting in the beginning 
of the project was a successful way to create initial 
familiarity between the members. Successful kick-off 
meetings did not have to include all the members 
participating in a single event; instead there could be 
several kick-off meetings at different times associated to, 
e.g., interdependent sub-projects. The important thing 
was that those individuals  who would be changing 
information or cooperating with each other, would get to 
know each other at the beginning of the project. 

In some cases cooperation problems were solved only 
after one party (e.g. the customer) had visited the other 
party’s (e.g. the subcontractor’s) premises and got 
acquainted with the working process and the nature of the 
encountered problems. In this sense collocated reviews, 
training occasions and joint planning meetings were 
invaluable for both parties, because in these meetings 
great amounts of background information and tacit 
knowledge could be exchanged.  

Other practices that facilitated the development of 
familiarity included the establishment and updating of an 
organizational chart for all the members to see, e.g., on 

the project web pages. A useful organizational chart 
included information about project members in all 
companies, e.g., names, roles, pictures, and contact 
information. Additionally, salient informing about the 
project goals in the beginning of the project – e.g., in the 
form of project plans or start-up meetings – also provided 
a ground for forming a common identity and vision of the 
project. 

Together these practices function to create a basis for 
the first step in trust building, namely familiarity. Some of 
these practices may seem quite trivial, but precisely 
because of the lack of traditional sources of trust, a proper 
implementation of the aforementioned practices proved to 
be crucial in networked conditions.  
4.2.2. Practices supporting the development of 
confidence. A tricky issue regarding the development of 
confidence in the studied cases was to establish binding 
and clear inter-organizational processes and stabilizing 
structures across the network. A useful practice in the 
beginning of the project was a collocated training of the 
development process to be used: things progressed more 
fluently after the exact meaning of the terms to be used in 
the development process was clearly agreed on between 
parties. Issues that were informed only in writing were 
often improperly internalized. Another related step was to 
give detailed feedback of the encountered deficiencies in 
code. If illustrative feedback of the deficiencies was 
given, perhaps face-to-face by a liaison person, the initial 
failures turned out to be strengths in some cases. 
Internalization of the coding and documentation 
principles was better when trained after some insufficient 
trials. 

Another major area in need of stabilizing practices was 
the arrangement of inter-organizational communication. 
A promising practice that was being developed in a 
couple of cases was the allocation of, e.g., task 
descriptions, decision-making rights and responsibilities 
to specific roles. These roles could be linked to matching 
roles in other companies. This way, the interdependencies 
between tasks and the exchange of crucial information 
became more clearly structured, providing a more 
predictable environment for the development work and 
helping people find the correct persons in important 
issues, preventing effectively both information overloads 
and information blocks. Further, clearly agreed reaction 
times to received e-mails, messages and questions 
decreased confusion between parties. 

When applied systematically, these practices created 
expectations of normal routines, standard operations and 
definite norms that guaranteed that the process kept on 
going solidly even in the face of problems and 
unexpected changes. In other words, when properly 
implemented, the practices established confidence, which 



can be seen as the second step on the way to successful 
trust building.  
4.2.3. Practices supporting the maintenance of trust. In 
the cases studied, a successful practice in maintaining a 
trusting orientation was proper informing about the 
project progress to all contributing parties. Mere follow-
up based on reported working hours did not suffice, since 
the parties wanted to know how their contributions 
affected the progress of the whole project. Instead, 
feedback about the quality and concrete contributions of 
the deliverables was appreciated. When the delivering 
parties could recognize, what had gone especially well 
and what were the reasons for possible dissatisfaction, 
their working morale and motivation remained high. 
Also, the exchange of experiences in the development 
work across team and company borders (e.g. chat, phone, 
e-mail lists) helped to create a common understanding 
and lowered the threshold for spontaneous offers of 
helping acts. When, e.g., developers learned about the 
circumstances and difficulties on other sites, their 
suspicions towards the alien deliverables were lowered. 
However, without a supporting management policy an 
open atmosphere was not likely to develop. 
4.2.4. Discussion. When the identified practices are 
viewed from the perspective of trust building, practices 
providing familiarity work as compensators for the first 
four sources of trust by providing knowledge of personal 
dispositions, helping to build a common history, 
introducing mediating third parties and identifying salient 
memberships in shared categories. Second, the practices 
that establish confidence compensate the most obvious 
deficiencies in the last two source categories by 
facilitating predictable role behaviour and the 
internalization of common rules. Third, if open and 
negotiating communication prevail and the parties are 
willing to inform each other about the project progress 
while also accepting the right to assess the contributions 
of each other, a basis for maintaining a trusting 
orientation is laid down.  

5. Conclusions and future research 

On the basis of both literature and the empirical 
findings it seems that the conditions associated with 
distributed global software development are very 
demanding, because most of the traditional sources of 
trust don’t exist in networked conditions. Consequently, 
trust in networks may emerge occasionally, but 
maintaining it is especially challenging. However, by 
concentrating properly on the practices that support the 
development of antecedent conditions of trust – 
familiarity and confidence – in the beginning of projects, 
trust building may bring out successful results also in the 

case of geographically and organizationally dispersed 
networks.  

The paper provides only initial outlines of the nature 
of problems and possible solutions in trust building. In 
the future our aim is to analyze the nature of the problems 
more thoroughly, e.g., by studying the typical sources of 
problems in different kinds of software development 
project types. We believe that when the challenges of 
cooperation in different project types are understood 
better, it also becomes possible to formulate adequate 
supporting practices for different kinds of networks and 
projects. Nevertheless, since it seems that the traditional 
sources of trust do not exist in networked conditions, it is 
probable that all types of global inter-organizational 
software development projects will benefit from some 
basic and general practices that support trust building. 

6. References 

[1] Creed, D.W.E., and R.E. Miles, “Trust in organizations”, in 
Kramer, R.M., and T.R Tyler, (eds.) Trust in organizations, 
Thousand Oaks, Sage, 1996, pp. 16-38. 

[2] Heeks, R., S. Krishna, B. Nicholsen, and S. Sahay, 
“Synching or sinking: Global software outsourcing 
relationships”, IEEE Software, March/April, 2001. 

[3] Herbsleb, J., A. Mockus, T. Finholt, and R. Grinter, “An 
empirical study of global software development: Distance and 
speed”, Proceedings of the 23rd International Conference on 
Software Engineering, ICSE 2001, pp. 81-90. 

[4] Jarvenpaa, S.L., K. Knoll, and D.E. Leidner, “Is Anybody 
Out There? Antecedents of Trust in Global Virtual Teams”, 
Journal of Management Information Systems, Vol. 14, No. 4, 
1998, pp. 29-64. 

[5] Kramer, R.M., “Trust and distrust in organizations: 
Emerging perspectives, enduring questions”, Annual Review of 
Psychology, Vol. 50, 1999, pp. 569-597. 

[6] Luhmann, N., “Familiarity, confidence, trust: problems and 
alternatives”, in Gambetta, D. (ed.) Trust: Making and Breaking 
Cooperative Relations, Basil Blackwell, Oxford, 1988, pp. 95-
107. 

[7] Miles, R.E., and C.C. Snow, “Causes of failure in network 
organizations”, California Management Review, Vol. 34, No. 4, 
1992, pp. 53-72. 

[8] Mishra, A.K., “Organizational responses to crisis”, in 
Kramer, R.M., and Tyler, T.R., (eds.) Trust in organizations, 
Thousand Oaks, Sage, 1996, pp. 261-287. 

[9] Sabherwal, R., “The role of trust in outsourced IS 
development projects”, Communications of the ACM, Vol. 42, 
No. 2, 1999, pp. 80-86. 

[10] Seligman, A.B., “Trust and sociability: On the limits of 
confidence and role expectations” American Journal of 
Economics & Sociology, Vol. 57, No. 4, 1998, pp. 391-404. 



[11] van der Smagt, T., “Enhancing virtual teams: social 
relations vs. communication technology”, Industrial 
Management & Data Systems, Vol. 100, No. 4, 2000, pp. 148-
156. 



 
Evaluating Effectiveness of Global Software Development Using the eXtreme 

Programming Development Framework (XPDF) 
 
 

Samantha J. Butler, Sian Hope 
School of Informatics 

University of Wales, Bangor 
sbutler@informatics.bangor.ac.uk, sian@informatics.bangor.ac.uk 

 
 

Abstract 
 

This paper presents an ongoing study into the 
productivity of the eXtreme Programming software 
development approach when carried out globally.  XP is 
evaluated using a framework that has been developed 
using multiple data collection techniques.  This study is 
in the early stages, at this point a pilot study is underway 
with a view to a more rigorous study once the analysis is 
complete and framework assessed.  The paper also 
covers the future work that could be completed using this 
framework. 
 
 
1. Introduction 
 
    Due to the changing nature of Software Engineering a 
greater number of people than ever are working in non-
traditional development environments.  This is pushing 
the existing Software development methods to new 
limits.   These methods have been proven over a number 
of years to work to at least a satisfactory level in more 
orthodox settings, the question that my research poses is 
do they also work to the same satisfactory level when 
used in a geographically disparate manner. 
 
    This paper presents a theory that I proposed, the 
reasoning behind this investigation and an initial set of 
results and future experiments.  This work is in its early 
stages and the results give an intermediary view of the 
investigation. 
 
2. Why I think XP can work in a Global 
development environment 
 
    The eXtreme Programming (XP) approach has been 
proven by previous studies to be a successful development 
methodology in an orthodox development environment 

[1][2]. In addition these studies show that although XP 
isn�t for everyone the majority of developers  who have 
developed software using both traditional software 
development methods and XP believe that this is a more 
satisfying and productive way of writing software.   
 
    There are now many tools available to encourage 
communication and numerous other tools available to 
allow two people to view and amend the same code at the 
same time from different locations, commonly grouped 
under the �groupware� heading [3][4].  However the use 
of tools alone will not be sufficient.  This work focuses on 
using XP as the process model with an eXtreme 
Programming Development Framework (XPDF) to 
evaluate this approach. 
 
    One of the four XP principles is communication and 
the importance of this to effective software development.  
Encouraging the level of communication suggested by 
XP in development teams working remotely has proved 
to be one of the most difficult areas to replicate.  With the 
tools that are readily available and the XP approach, this 
work is evaluating whether it is possible to have a similar 
level of communication whilst working in remote 
locations to more orthodox software development teams. 
 
3. What is XPDF? 
 
    XPDF is an evaluation framework, which incorporates 
small, easily implemented, aspects from three, previously 
tried and tested investigation techniques.  These include 
Software Process Improvement [5] evaluation processes, 
such as aspects from the Capability Maturity Model 
[6][7][8], which focuses heavily on the repeatability and 
reliability of the development method in question, in this 
case XP.   
 
    Qualitative Research techniques focus on the 
subjective opinions of those participating in the study; in 



this context how people feel about working in remote 
locations in place of a more traditional development 
environment or using different development 
methodologies.  Data will be collected using 
questionnaires and interviews [9][10].   
 
    Finally Software Metrics were collected, software 
metrics are the bare statistics of the team, number of lines 
of code produced in the time given, the number of errors 
in the final deliverable, any change from previously 
delivered work to name a few [11][12][13]. 
 
    During the data collection phase data collected using 
each technique was treated in isolation, as indicated by 
Figure 1.  However during the evaluation phase of the 
investigation several of the results will be analysed using 
two or more methodologies simultaneously. 
 
 
 
 
 
 
 
 
 
 
Figure 1: The Evaluation Framework used. 
 
    Several XP practices can be carried out in the same 
way independently of the location of the developers.  This 
study concentrates on the evaluation of the practices that 
must be adapted, these include pair programming, 
collective code ownership, customer onsite and always 
available, and high levels of communication and pair 
swapping [14][15].  XPDF aims to evaluate the 
productivity of teams using XP in remote situations in 
comparison to those in more traditional settings. 
 

4. Preliminary results 
 
    Preliminary results show that XP is a very effective 
development methodology when used in an orthodox 
setting [1][2].  There are no official results for the 
effectiveness of XP when used on remotely conducted 
projects as this research is in its early stages. However 
early indicators of the analysis of data are that with the 
correct tools in place to aid communication XP can be 
just as effective when carried out in this manner as in 
more orthodox settings. 
 
 
 

 
 
 
 
5. Experiments in Progress 
 
5.1. Experiment 1 
 
    This experiment involves a number of volunteers.  
Each experiment requires two participants.  After the 
pilot investigation it would be beneficial to have more 
participants involved throughout each iteration.  People 
participating in this experiment are given an overview to 
eXtreme Programming, in the form of a handout for 
them to read.  An in-depth knowledge is not required, as 
specific tasks are presented guiding the participants 
through XP in a stepwise manner.   
 
    A relatively simple exercise, involving the 
programming of a �Lego brick� is presented for 
completion following XP principles.  The main 
challenges of this task are the implementation of XP 
practices on this scale and with participants in different 
locations. The two participants are located in adjoining 
rooms.   The person conducting the experiment is able to 
view the activities of both participants and give 
instructions to both participants or to each individual.  
Communication is by means of a telephone, NetMeeting 
and a code-sharing tool.  All tasks are be presented by the 
customer as realistically as possible in the form of tasks 
and story cards decided at a planning meeting, again 
conducted remotely, with changing requirements and 
priorities. 
 
5.2. Experiment 2 
 
    Software Hut is a module taken by all second year 
students taking a Computer Science / Studies degree 
course.  During this module the students are asked to 
write a piece of software to fulfil a specific brief.  All the 
students are given the same brief and all have to follow 
the same development process.  To carry out the 
investigation effectively the group is split into two sub 
groups, both are presented with the same task.  One 
group follows the XP principles in an orthodox manner, 
the other follows XP remotely.  Both groups are 
evaluated using XPDF. 
 
    It could be argued that these students have insufficient 
experience in both developing software using any 
development process, or carrying out eXtreme 
Programming software development in particular.  

 
Software 
Metrics 

SPI 
Evaluation 

 
Qualitative 
Research 

XPDF 
data 



However at no point in the specification of this research 
is it mentioned that the subjects under investigation are 
either experienced software developers or in mainstream 
industry.  The criteria are that the participants are 
developing software on some scale following the eXtreme 
Processing methodology in a remote fashion.  When this 
implementation is carried out the lack of experience will 
have to be taken into consideration when analysing the 
results.  Similar studies evaluating XP in undergraduate 
modules have been carried out and the effect on the final 
conclusions shows to be negligible [16][17]. 
 
6. Future experiments � Why Use XPDF? 
 
    Small development teams carrying out all or some of 
their development using XP in a remote manner would 
be required to participate in the experiment.  Companies 
would be required to supply similar information to that 
required in the experiments currently running.  This 
would include the completion of qualitative and 
quantitative questionnaires, participation in an interview.  
As well as the above each company would be required to 
provide a summary of productivity during the course of 
the study.   
 
    In return for their participation the company would 
gain feedback on the emotions of the development team 
regarding the process and productivity, suggestions on 
how the current process could be improved based on the 
information gathered from their company and the 
findings of others.  All information supplied would be 
confidential. 
 
As well as this companies would be included in any 
research papers resulting from the studies. 
 

7. References 
 
[1] Gittins, R.G., Hope, S., Williams, I. �Qualitative 
Studies of XP in a Medium Sized Business�  UPGRADE 
The European Online Magazine for the IT Professional. 
Vol. III, No.2, April 2002  http://www.upgrade-cepis.org 
 
[2] Gittins, R Qualitative Studies of XP in a Medium 
Sized Business�  
Proceedings of the 2nd International Conference on 
Extreme Programming and Flexible Processes in 
Software Engineering. 20-23 May 2001, Sardinia, Italy 
 
[3] http://www.usabilityfirst.com/groupware/intro.txl 
 
[4] http://simon.cs.vt.edu/jamm/ 
 

[5]Systemic Software Engineering; Software Process 
Improvement White Paper; 2000 
 
[6] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and 
Charles V. Weber, "Capability Maturity Model, Version 
1.1," IEEE Software, Vol. 10, No. 4, July 1993,  
pp. 18-27. 
 
[7] http://www.sei.cmu.edu/cmm/cmm.html 
 
[8] http://www.sei.cmu.edu/cmm/ 
 
[9] Patton, M.Q; Qualitative Evaluation and Research 
Methods (2nd Edition; SAGE Publications 
 
[10] Seaman, C.B; Qualitative methods in Empirical 
Studies of Software Engineering; IEEE Transitions in 
Software Engineering; Vol25 (4): 55-572 July/Aug 99 
 
[11]Fenton, NE and Pfleeger, Shari Lawrence; Software 
Metrics, a Rigorous and Practical Approach; 
International Thompson Computer Press; 1996 
 
[12]Goodman, Paul; Practical Implementation of 
software metrics; McGraw-Hill; London; New York: 
McGraw-Hill, c1993 
 
[13] Cultivation and engineering of a software metrics 
program; Iversen J, Mathiassen L                    
INFORMATION SYSTEMS JOURNAL 13 (1): 3-19 
JAN 2003 
 
[14 ]Beck, K; eXtreme Programming Explained: 
Embrace Chnge; Addison Wesley; 2000 
 
[15] Jefferies, R; Anderson, A; Hendrickson, C; eXtreme 
Programming Installed; Addison Wesley; 2000 
 
[16] Macias, F, Holcombe, M; Empirical Experiments 
with XP, University of Sheffield, 2002 
 
[17] Holcombe, M, Gheorghe, M, Macias, F; Teaching 
XP for Real: Some Initial Observations and Plans; 
University of Sheffield; 2002  
 



 

Taking Global Software Development from Industry to  
University and Back Again 

 
 

Igor Cavrak 
University of Zagreb 

Faculty of Electrical Engineering and 
Computing 

HR-10000 Zagreb, Croatia 
+385 1 6129 861 

igor.cavrak@fer.hr 
http://www.rasip.fer.hr/icavrak 

 
 

Rikard Land 
Mälardalen University 

Department of Computer Science and 
Engineering 

PO Box 883, SE-721 23 Västerås, Sweden 
+46 21 10 70 35 

rikard.land@mdh.se 
http://www.idt.mdh.se/~rld 

 
Abstract 

 
As global software development (GSD) establishes 

itself as a software engineering practice, it should be 
taught to the software developers of the future. But can 
the problems of GSD really be transferred to the 
controlled environment of a university course? Will the 
students attending the course be able to cope with the 
problems associated with GSD as professionals? This 
paper elaborates on these questions by presenting 
approaches, methods, and goals in a planned GSD 
university course. 
 
1. Introduction 
 

Universities should equip computer science students 
with not only theory and technology skills but also 
knowledge in the engineering environment they will be 
faced with as future software engineers. Many such issues 
are addressed by specific courses in software engineering, 
often organized as practical projects in which the students 
will have to tackle “real” problems [1,2,5,6,7,8,9,12]. But 
as global software development (GSD) is becoming 
widespread in today’s international enterprises and virtual 
organizations [3,10], universities should incorporate this 
trend into their curriculum [11]. To our knowledge, 
university courses or student projects involving global 
software development are very rare, and are restricted 
either to existing software engineering courses [2] or case 
studies [1]. Perhaps the problem to give a course in this 
area is due to the inherent properties of global software 
development: it is difficult to present a university course 
that faces the students with global development specifics 
such as telephone- and videoconferencing, distributed 
configuration management, using a foreign language 
(English), coping with another culture, and collaborating 

across time zones. Despite this, we have accepted the 
challenge and are developing a course in distributed 
software development, to be simultaneously held in 
Västerås, Sweden, and Zagreb, Croatia. 
 
2. Course Description 
 

The students will be introduced to the problems of 
GSD through lectures and/or self-studies but the larger 
part of the course will consist of a joint software 
development project. In the project, the students will 
encounter many GSD problems but not all: Sweden and 
Croatia are e.g. located in the same time zone. Besides 
combining theory and practice through lectures and the 
joint project, the problem domain addressed by the project 
will as well be in the GSD domain: we plan to develop 
and/or enhance tools to support GSD. Each time the 
course is held, experiences and suggestions of more 
product features will be “inherited” from the previous 
year. In this way requirements and products are 
“bootstrapped” along subsequent courses. 

 
2.1. Relation to Community Development 
 

As products will be primarily based on free software 
(due to the financial reality), we plan to submit course 
products back to the public community thus employing a 
large number of users in testing the product usability and 
quality, and gathering feedback to use in next year’s 
requirements. Maintenance of the product will be (at least 
partially) ensured by assigning product-related graduation 
thesis to some of the students participating in the project. 

The type of development the students will perform 
only vaguely resembles community development: 
although the work is distributed and somewhat 
individualized, there will be a much stronger project 



management, and some of the developers will meet 
physically. 
 
2.2. Relation to GSD in Industry 
 

If the course involves a real customer, he will 
presumably invest both time and money [2], enabling both 
a real-world problem and traveling possibilities [2]. 
However, there is a risk that focus will be more on the end 
product than on the educational elements of the project. 

We have therefore chosen to avoid industrial 
involvement in favor of a slight shift towards community 
software development. This means that we can focus on 
education, but it also means that we will have to use low-
cost communication media and will not be able to let the 
students travel. Especially the latter is a great 
disadvantage, since being able to meet face to face has 
been emphasized as the most important means to enable 
successful GSD [3,4,10]. However, by the start of the 
course some of the course leaders will have worked 
together for six months, which will help alleviating the 
cultural and physical distance [2,3,4]. Also, since this is a 
university course, should the worst happen and there is no 
product at all at the end of the course, this is evidence that 
the students encountered problems – which is educational 
(at least to some extent). 

The students will form groups at each university and 
work part of the time together, as is the case in the office 
environment at most companies, but will also work at 
different hours and locations (due to their other 
obligations and us not providing personal workplaces at 
the university). 
 
2.3. University Specifics 
 

There are other university environment specifics as 
well such as students having different background and 
experiences, adjusting the course to the existing 
curriculum at two universities (which can present a major 
problem as duration of the course, start and end dates 
must be coordinated [2]). Each university also has a 
responsibility towards its own students in the first place – 
how should students working on the same project/product 
be graded in different rating systems? And what happens 
if there are not enough students at one of the universities 
involved? A careful balance must be struck not to 
overwhelm students with project work on one of the sites 
due to differences in obligations regarding the number of 
other courses held at their universities. 

 
3. Main Issues 
 

We can discern two major challenges for our course. 
First, how do you transfer the problem domain of GSD 

from industry environment to a university course? Second, 
how useful will the outcomes of the course be to industry: 
solutions and software professionals? 
 
4. References 
 
[1] Brereton P., Lees S., Bedson R., Boldyreff C., 
Drummond S., Layzell P., Macaulay L., Young R., 
“Student Collaboration across universities: A Case Study 
in Software Engineering”, Proceedings of 13th Conference 
on Software Engineering Education and Training 
(CSEE&T), IEEE, 2000. 
[2] Bruegge, B., Dutoit, A.H., Kobylinski, R. and 
Teubner, G. “Transatlantic project course in a university 
environment”, Proceedings of 7th Asia-Pacific Software 
Engineering Conference (APSEC), 2000. 
[3] Carmel E., Global Software Teams: Collaborating 
Across Borders and Time Zones, ISBN 0-1392-4218-X, 
Prentice-Hall, Upper Saddle River, NJ, 1998. 
[4] Carmel E., Agarwal R., “Tactical Approaches for 
Alleviating Distance in Global Software Development”, 
IEEE Software, volume 18, issue 2, IEEE, 2001 
[5] Crnkovic I., Larsson M., and Lüders F., 
“Implementation of a Software Engineering Course for 
Computer Science Students”, Proceedings of 7th Asia-
Pacific Software Engineering Conference (APSEC), 2000. 
[6] Crnkovic I., Land R., and Sjögren A., “Is Software 
Engineering Training Enough for Software Engineers?”, 
Proceedings of 16th Conference on Software Engineering 
Education and Training (CSEE&T), IEEE, 2003. 
[7] Daniels M., Faulkner X., and Newman I., “Open 
ended group projects, motivating students and preparing 
them for the ‘real world’”, Proceedings of 15th 
Conference on Software Engineering Education and 
Training (CSEE&T), IEEE, 2002. 
[8] Dawson R.J., Newsham R. W., and Fernley B. W., 
“Bringing the 'real world' of software engineering to 
university undergraduate courses”, IEE Proceedings In 
Software Engineering, volume 144, issue 5, 1997. 
[9] Dawson R., “Twenty Dirty Tricks to Train Software 
Engineers”, Proceedings of 22nd International Conference 
on Software Engineering (ICSE), ACM, 2000. 
[10] Karolak D., Global Software Development: 
Managing Virtual Teams and Environments, ISBN 0-
8186-8701-0, IEEE Computer Society Press, Los 
Alamitos, CA, 1998. 
[11] Shaw M., “Software Engineering Education: A 
Roadmap”, Proceedings of the 22nd International 
Conference on Software Engineering, ACM Press, New 
York, NY, 2000. 
[12] Wohlin C. and Regnell B., “Achieving industrial 
relevance in software engineering education”, 
Proceedings of 12th Conference on Software Engineering 
Education and Training (CSEE&T), IEEE, 1999 


	2_5_Paasirava.pdf
	Software Business and Engineering Institute
	
	
	Table 2.  Communication needs and practices identified




	3_1_Espinosa.pdf
	ABSTRACT
	1. Introduction
	2. Time separation
	3. The model
	3.1 Theoretical foundations
	3.2 Model Formulation
	3.3 Assumptions

	4. Model evaluation
	5. Discussion and future research
	6. References

	3_2_Pyysiäinen_Building trust_ICSE.pdf
	Abstract
	1. Introduction
	2. Theoretical framework
	2.1. Concept and sources of trust
	2.2. Developmental stages of trust

	3. Data and methods
	4. Results and discussion
	4.1. Problems in trust building
	4.2. Practices for successful trust building

	5. Conclusions and future research
	6. References


	page4: 3
	page5: 4
	page6: 5
	page7: 6
	page8: 7
	page9: 8
	page10: 9
	page11: 10
	page12: 11
	page13: 12
	page14: 13
	page15: 14
	page16: 15
	page17: 16
	page18: 17
	page19: 18
	page20: 19
	page21: 20
	page22: 21
	page23: 22
	page24: 23
	page25: 24
	page26: 25
	page27: 26
	page28: 27
	page29: 28
	page30: 29
	page31: 30
	page32: 31
	page33: 32
	page34: 33
	page35: 34
	page36: 35
	page37: 36
	page38: 37
	page39: 38
	page40: 39
	page41: 40
	page42: 41
	page43: 42
	page44: 43
	page45: 44
	page46: 45
	page47: 46
	page48: 47
	page49: 48
	page50: 49
	page51: 50
	page52: 51
	page53: 52
	page54: 53
	page55: 54
	page56: 55
	page57: 56
	page58: 57
	page59: 58
	page60: 59
	page61: 60
	page62: 61
	page63: 62
	page64: 63
	page65: 64
	page66: 65
	page67: 66
	page68: 67
	page69: 68
	page70: 69
	page71: 70
	page72: 71
	page73: 72
	page74: 73
	page75: 74
	page76: 75
	page77: 76
	page78: 77
	page79: 78
	page80: 79


