
Supporting an Explicit Organizational Model in

Global Software Engineering Projects

Oliver Creighton, Allen H. Dutoit, Bernd Brügge
Technische Universität München
{creighto,dutoit,bruegge}@cs.tum.edu

February 20, 2003

Abstract

In this paper, we propose the integration of relevant support tools for a global software development
project based on a shared organizational model. By providing a single directory service where consistency
and accuracy of this model can be better controlled, we intend to achieve several benefits. In particular,
the ability to automate some of the tasks associated with initiating a distributed software project, thereby
reducing the latency between the setup phase and the development phase.

1 Introduction

A software engineering project requires several dif-
ferent tools at the same time: communication tools,
like email clients or web-based bulletin boards, work-
flow applications for process enactment, and tradi-
tional CASE tools such as integrated development
environments. Many depend on a model of the
project organization. The simplest form has been
traditionally to store user names and passwords, a
more complicated form, which also supports work-
flows, includes notions of teams, roles, and resources.
The tools have their own scheme to store the mod-
els, as a consequence much of the organizational
information is duplicated across tools and develop-
ment sites. This leads to problems of inaccuracy,
redundancy, and incompleteness. In the past these
were accepted by developers in local environments,
as they could be resolved through informal commu-
nication.

The problems, however, have become harder in a
distributed environment: If the organization is best-
effort driven, as e.g. many open source projects are,

change occurs frequently and spontaneously, mak-
ing one person the key contact for an entire system,
where most subsystems might still state a previous
person as the contact. Updating this information in
all associated tools across potentially several devel-
opment sites quickly becomes too much of an effort
for any organization, the frequent solution is there-
fore to simply not store this information explicitly
in the first place. In general, distributed organiza-
tions suffer from reduced informal communication,
which in turn results in the need to make implicit
organizational knowledge explicit [2, 5]. Ideally, the
information about the organization (e.g., “Who is
programmer, tester, or maintainer for what?”) is
made explicit for every artifact in every tool, espe-
cially in a globally distributed project.

The key issue that we address in this paper is
how to minimize redundancy in the organizational
knowledge stored across tools in order to minimize
inconsistencies. If more knowledge about the orga-
nization is made explicit and shared among many

1



tools, the value of this knowledge increases dramat-
ically. Moreover, if all project participants can up-
date the part of this knowledge that is relevant to
them, the chance that this knowledge is up-to-date
increases accordingly. Hence, we propose a central
project directory service supporting the authentica-
tion of users, the storage of user-specific attributes
(e.g., email address, web home page), team compo-
sitions, roles, and access control lists. This project
directory can be conveniently accessed by any tool in
the project for storing and retrieving organizational
knowledge, across sites, tools, and users.

We identify four main properties that such inte-
gration efforts should expose: Solutions should be

open: Several entry levels of abstraction (from
basic access protocols such as LDAP or HTTP to
higher levels of abstraction such as a Java API)
should be provided.

encapsulated: All integrated components (the
tools and infrastructure extensions) should be ex-
changable by using standardized interfaces and pro-
tocols.

secure: Distribution of personal data should be
definable by users, following the informational self-
determination principle (making it necessary to use
encryption for network communication and possibly
storage).

scalable: A single directory service should be dis-
tributed across server clusters or even globally. The
unity needs only to exist for data integrity, but re-
sponse times and firewall issues need to be consid-
ered. Adding new tools and new sites should be easy,
so a single directory hosted on a single server is not
an acceptable solution.

Such a solution has several benefits. Take for ex-
ample the startup phase of new projects in a project-
based organization. When a large number of new
hires are assigned to a newly initiated project, the
project setup also faces social barriers as informal
communication requires team-building and a relaxed
atmosphere for getting to know each other. We com-
pare such highly condensed project start-ups to a
big-bang, where suddenly a large mass of active el-
ements are introduced in a formerly empty environ-
ment. The formation of a clear structure on these
elements is key to good collaboration. It is common

practice to begin projects with some ice-breaking ac-
tivities that will help participants memorize their
names or get a feel for background and interests of
each other. But in the case of global software devel-
opment, this is sometimes impossible to organize, as
sending all developers to meet everyone else is too
expensive.

As the various support tools need to be installed
and configured, projects usually begin with a prepa-
ration phase where a small group of project initiators
try to generate as much of the anticipated required
structure as possible. This task is typically on-going
during the entire project duration, as changes in or-
ganization frequently also lead to changed require-
ments for the support infrastructure.

As mentioned, almost all tools that aid in soft-
ware engineering contain some form of user man-
agement for access control, contact information, or
representing the roles that various project members
have in the project. By unifying some of the re-
quired installation steps through tool integration, we
expect to shorten the setup phase and begin the de-
velopment phase of projects earlier.

2 Single Directory Service based
on an Organizational Model

The typical use of a centralized directory service in
organizations is to provide a phonebook (the “White
Pages” of the organization) containing basic contact
information for every employee. While this is a use-
ful and important service in itself, when it comes to
supporting CASE tools in a broad sense, the stan-
dard idea of an alphabetical list of people is not suffi-
cient. Providing information about the properties of
each employee, in an organized fashion that makes it
straightforward to look for related work areas, would
be another use (the “Yellow Pages” of the organiza-
tion).

But even if a central directory service for these
purposes is installed, and is provided by standard
access mechanisms such as LDAP, the benefit is not
yet reaching the CASE tools directly. To provide in-
tegrated user and resource management, it is neces-
sary to first make the organizational model explicit

2



and then to share it across tools and sites for the
consistency reasons explained before.

The basis of our directory is the following object
model, which we believe can express all organiza-
tional models we encounter in the various project
courses that we test our tools in (cf. section 3):

HumanResource

Group Person
Membership

role
start
end

*

*

Resource
Unique Identifier (URI)
Creator
LastModified

Project ConcreteResource
Location (URL): String

*

*

ACL

*

1

In short, human resources can be grouped in arbi-
trary depth, and the associations have attributes to
support changes in the organizational structure over
time. Projects are represented as the sum of all re-
sources they contain, and on the abstract level of
Resource, the basic functionality for authorization is
integrated by associating it with one group as its
Access Control List (ACL). The exact access role
is represented by the role attribute in the Member-
ship class, which states, for example in the direc-
tory itself, roles like “Administrator”, “Author”, or
“Reader”. But since this attribute is interpreted by
the individual applications, it can be extended with
other roles as they require.

With this model, the directory service is predes-
tined to provide a service for authentication, to ver-
ify the identity of users, as it then can be assured
that if applications want to control access to specific
entity objects they control, and they are concrete
subclasses of Resource in our model, the directory
service can provide verification of access (authoriza-
tion) for users.

Consider the following example, illustrated by an
instance diagram of the directory object model:

NetworkSubsystem:
ConcreteResource

NetworkDevelopers: Group NetworkQA: Group

Alice: Person Bob: PersonCharles: Person Dan: Person

M1:Membership
role = Author
start = 15 Jan
end = 15 Feb

M2:Membership
role = Reader
start = 15 Jan
end = 15 Jul

M3:Membership
role = Reader
start = 15 Feb
end = 1 Mar

M5:Membership
role = Author
start = 1 Mar
end = 15 Apr

NetworkTeam: Group

ACL

M4:Membership
role = Reader
start = 15 Apr
end = 1 May

The NetworkSubsystem, a ConcreteResource con-
trolled and modified by different tools (such as a ver-
sion control system for the source code and a work-
flow support tool for quality assurance scheduling) is
associated with the NetworkTeam. This Group is in-
terpreted as the ACL for the resource, which causes
that the role attribute in the Membership association
objects specifies the access rights of the contained
HumanResources, in our case the two groups Net-
workDevelopers and NetworkQA. Our example shows
how one would model a source code promotion strat-
egy, where after the code freeze deadline of Febru-
ary 15th, developers can no longer modify the sub-
system, as it has been handed over to the quality
assurance (QA) group for testing. The QA group’s
deadline for testing is in our example March 1st, af-
ter which developers are again allowed to modify the
subsystem, but the QA people have no access until
the next cycle, starting April 15th.

For the entire duration of the project, developers
are allowed to read source code; note that Member-
ship objects can exist multiple times for the same
time span and HumanResource combination, only
varying in role. The Membership objects between
the Groups and Persons that we omitted in the in-
stance diagram could be used for temporarily assign-
ing more people to the testing group, but the role
attribute will be insignificant for the NetworkSubsys-
tem as only the NetworkTeam group is interpreted as
its ACL. In other words, the containment relation is
transitive, whereas the is-ACL-for relation is not.

3



By storing this information in a single directory
and providing mechanisms for modifying it, while
retaining a consistent access restriction as to who is
allowed to, it becomes possible to integrate function-
ality in the workflow tool for project management
to delay the date of code promotion to QA stage,
and automatically assure that developers will con-
tinue being able to modify the source code without
changing anything in the version control system.

3 Evaluation Environment

In researching distributed software engineering, we
have taken the approach of “learning-by-doing.”
We have taught several global software engineer-
ing (GlobalSE) project courses in which teams of
students located in Pittsburgh, PA and in Munich,
Germany collaborated on developing a system for a
single industrial client [1, 3]. We follow a sawtooth
process in which developers present a sequence of
incrementally more refined prototypes to the client
and to project management, so that the scope and
the direction of the project can be refined at regular
intervals.

Distributed reviews are done using a combina-
tion of video conferencing, phone, application shar-
ing environments, shared slides, and the web. The
infrastructure also included asynchronous tools such
as Lotus Notes bulletin boards, CVS for version con-
trol, a UML modeling tool, and an integrated devel-
opment environment. More recently, we have also
introduced a requirements management tool [4], an
awareness infrastructure [6], and a workflow tool for
process enactment. As most tools do not share the
same user information, developers need a user name
and password for each tool. Moreover, while the in-
frastructure available to students includes the same
set of tools in both sites, these tools are usually ad-
ministered locally, resulting in duplication of user
and project organization information, as described
in the introduction. Worse, not all knowledge for
administrating this information is available in any
one site, resulting in inconsistencies and informa-
tion that is out of date (e.g., users who left the
project, teams whose name and purpose changed).

To address these issues and to evaluate the value of
a single project directory approach, we have been
adapting the project infrastructure so that it uses
the directory described in the previous section. In
particular, the following aspects of the environment
are being revised:

User authentication. The most immediate
benefit of the single directory is that users have a
single account across all tools in the infrastructure.
If they change their password, the new password
will take into effect immediately. As the directory is
shared across sites, users also have a single account
across all sites. Similarly, all attributes associated
with users, such as email addresses used for notify-
ing developers, are stored only once.

Directory user interface. We implemented
the directory in our Lotus Notes infrastructure. As
a consequence, users can update their directory en-
tries as before, by editing their record in the Lo-
tus Notes address book. As every user has write
access to their own data, the attributes associated
with each users are kept up to date more often.

Team structure. The team membership
of each user is represented in the directory as
groups, which are also resources associated with each
project. As developers change teams and often take
part in more than one projects, this enables us to
track team membership over time, when assessing
a developer’s skills. From the infrastructure stand
point, this also enables tools to leverage off the team
organization. For example, the workflow tool we use
allows tasks to be assigned to a team or to an indi-
vidual. When the task responsibility changes, an
email notice is sent both to the participants who
are responsible and to those who were responsible
for the task. The workflow tool retrieves the list
of team members from the directory. As other tools
which provide group notifications (e.g., Lotus Notes)
also retrieve the same information, the actions of
these different tools are consistent. Moreover, this
encourages participants to keep this information up-
to-date.

Role and access control. The Group and
Membership classes in the directory enable us to
represent role information. By using a Group as
an access control list, each tool can offer a differ-

4



ent behavior depending on the role of the user. For
example, the workflow tool only allows users with
a manager role to change the process model. Users
with a coach role can change the responsibility of
each task. We are currently modifying other tools
to take advantage of this information. For exam-
ple, in our requirements tool, only analysts would
be able to modify the requirements while both an-
alysts and reviewers would be able to annotate the
requirements with questions.

We plan to complete these changes and evalu-
ate the single directory concept by our next dis-
tributed project course, which will take place during
the summer between Munich, Germany and Otago,
New Zealand.

4 Conclusion

In this paper we propose a technology-driven ap-
proach, as opposed to a business administration-
driven approach, for enabling software engineers to
build better software through rationale capture and
knowledge management.

Key challenges in project organization include
identifying incentives for developers to accept the
tools the organization wants to employ and address-
ing individuality and privacy concerns.

When identifying potential incentives, we note
that lack of sharing of information among sites leads
to adverserial relationships and lack of trust. We
anticipate that sites can benefit from the system by
offering a greater transparency into their activities.
Such transparency can then lead, for example, to
certification frameworks for supplier sites and rein-
force long term relationships among sites.

When addressing privacy concerns, we propose
that providing a unified storage and access control
model that is powerful enough to individually set
the data distribution scope while at the same time,
through unification, being simple enough to allow
every individual to determine the scope themselves,
we can offer enough flexibility for people to trust a
centralized storage of their personal information.

In general, the above issues are difficult to pre-
dict and anticipate, as they relate to complex or-

ganizational and human processes. Only an experi-
mental approach will enable us to assess the impact
of the system with respect of these issues and design
solutions to address them.

We intend to continue our approach to first in-
tegrate the organizational model across tool bound-
aries with integrating entity objects that CASE tools
work with by identifying common data structures
that could then also be shared in a similar fashion.
The description of our underlying meta-model en-
compassing not only the GlobalSE organizational
models, but also the system models and rationale
models is out of scope for this paper and can be
found in Kobylinski et al.[6].

References

[1] B. Bruegge, A. H. Dutoit, R. Kobylinski, and
G. Teubner. Transatlantic project courses in a
university environment. In Asian Pacific Soft-
ware Engineering Conference, Dec. 2000.

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study
of the software design process for large systems.
Communications of the ACM, 31(11), Nov. 1988.

[3] A. H. Dutoit, J. Johnstone, and B. Bruegge.
Knowledge scouts: Reducing communication
barriers in a distributed software development
project. In Asian Pacific Software Engineering
Conference, Dec. 2001.

[4] A. H. Dutoit and B. Paech. Rationale-based
use case specification. Requirements Engineer-
ing Journal, 2002.

[5] R. E. Grinter, J. D. Herbsleb, and D. E. Perry.
The geography of coordination: Dealing with
distance in R&D work. ACM, 1999.

[6] R. Kobylinski, O. Creighton, A. H. Dutoit, and
B. Bruegge. Building awareness in distributed
software enginering: Using issues as context. In
International Workshop on Distributed Software
Development, International Conference on Soft-
ware Engineering, May 2002.

5


