
A Software Architecture for
Knowledge Acquisition and Retrieval for Global

Distributed Teams
Andreas Braun

Accenture
Maximilianstr. 35

80539 München, Germany
andreas.braun@accenture.com

Allen H. Dutoit and Bernd Brügge
Technische Universität München

Institut für Informatik/ I1, Boltzmannstraße 3
85748 Garching b. München, Germany

{dutoit, bruegge}@cs.tum.edu

Abstract
Communication and knowledge building are challenging in
distributed contexts: participants do not all know each other
and work at different times and locations; the number of par-
ticipants and their organization change during the project; par-
ticipants belong to different communities. Hence, to deal with
the global market place, it is critical to provide teams with
distributed collaboration skills and tool support. To improve
the collaboration in global software development (GSD), we
propose iBistro [2], an augmented, distributed, and ubiquitous
communication space. iBistro aims to overcome problems re-
sulting from miscommunications and information loss in in-
formal or casual meetings. In this paper, we specifically focus
on the technical architecture for iBistro, called the distributed
concurrent blackboard architecture (DCBA). We developed
and tested an experimental prototype of the DCBA between
the National University of Singapore and Technische Univer-
sität München (TUM),Munich, Germany.

Keywords: Global software development,
technological solutions, groupware.

1 Introduction

Distributed projects leverage off tools, such as group-
ware, distributed repositories, and videoconferencing
utilities, to accumulate and distribute knowledge and ar-
tifacts. Distributed projects, however, introduce many
technical and social barriers. In addition to being ge-
ographically distributed, participants come from differ-
ent corporate cultures, use different tools, follow con-
flicting standards, and often speak different languages.
Such challenges are difficult to meet and often cause the
failure of the project.

Our goal in software engineering labs at Technische
Universität München (TUM) and at Carnegie Mellon
University (CMU) has been to provide a realistic soft-
ware engineering experience to students. We have done
this by immersing students in a single, team-based, sys-
tem design project to build and deliver a complex soft-
ware system for a real client. Since Fall 1997, we had
the opportunity to teach distributed software engineer-

ing project courses in TUM and CMU [4]. Teams of stu-
dents at CMU and TUM were taught to collaborate us-
ing groupware (e.g., web sites, Lotus Notes, Email) and
configuration management systems (e.g., CVS) to de-
sign and build a system for a client. Client reviews and
internal reviews were conducted using videoconferenc-
ing facilities, enabling each site to present its progress
and obtain feedback from the client and from the other
site. While all projects were completed successfully
and students acquired a number of skills for dealing
with distribution, we experienced many difficulties in
the areas of communication and collaboration among
the sites. In particular, participants at both sites spent
much more effort during solving unexpected problems
and interface mismatches than would have been the case
in a single site setting. Distribution made the four fol-
lowing obstacles especially difficult:

Inability to find stakeholders quickly. Since partici-
pants were distributed and did not know each other,
finding the author of a piece of code or of a sub-
system could take several days. Similarly, finding
a project participant who had an area of expertise
to help with a specific problem could likewise take
several days.

Inability to access knowledge. Since many decisions
taken by teams were taken during meetings or in-
formal conversations, participants at the other site
could not easily access the rationale of the system.
Hence, participants encountered unexpected prob-
lems when enhancing or modifying components
produced by the other site. While meetings were
documented in meeting minutes that were avail-
able via the groupware, such records were orga-
nized chronologically and were difficult to search
when looking for a specific problem.

Inability to find artifacts quickly. Even though par-
ticipants used the same repository for tracking ver-
sions of their components, it was difficult to iden-
tify when new versions were checked in and which

problems new versions addressed. Similarly, a site
was usually not aware of whether a new version
was under test and about to be released. Conse-
quently, sites worked often on outdated versions
and produced version conflicts by solving the same
problems twice.

Inability to build “group memory”. During the dif-
ferent stages of the lifecycle, many different and
altering communication media, such as email,
bboards, team web pages, databases for bugs or
tasks, were used. People collaborate by communi-
cating both formally and informally. Much of the
information and knowledge, however, only resides
only in the people’s mind or somewhere unlinked
in the databases or applications; the knowledge is
lost for the organization or team.

Note that all four problems noted above were caused,
at least in part, by some type of communication break-
down. Researchers distinguish between informal and
formal communication and recognize their application
to different types of issues [8]. Formal communication
is typically non-interactive and impersonal and includes,
for example, formal specifications, written documen-
tation, structured meetings. Informal communication
is typically peer-oriented and interactive and includes,
for example, hallway conversations, lunch breaks, and
informal conversations that follow formal meetings.
While formal communication is useful for coordinating
routine work, informal communication is needed in the
face of uncertainty and unexpected problems. Note that
all three problems noted above were caused, at least in
part, by lack of informal communication, typical of dis-
tributed projects [6, 8, 1].

In this paper, we describe the technical architecture
for iBistro [2]. iBistto is an experimentation environ-
ment that allows distributed teams to capture, struc-
ture, and retrieve information and knowledge produced
in global distributed software development projects.
iBistro focuses on the integration of various sources of
information, including informal meetings held in specif-
ically equipped rooms. The technical architecture, the
distributed concurrent blackboard architecture (DCBA)
for iBistro has been implemented and evaluated during
a distributed project at the National University of Singa-
pore and TUM.

This paper is structured as follows. Section 2 pro-
vides an overview of iBistro and details how iBistro
can be used to capture, structure, and retrieve knowl-
edge, and more generally, address problems such as
finding stakeholders, accessing knowledge, finding ar-
tifacts, and building a group memory, as we identified
above. Section 3 lists our results achieved so far and
concludes this paper by outlining the outlook for iBistro.

2 The iBistro System

We start our overview of iBistro’s architecture and de-
sign by recapitulating the specific characteristics of both
(informal) meetings and software engineering to sub-
stantiate our design decision for the blackboard model
[7] as the chosen architectural pattern.

Software development is a problem-solving activity.
In a software project, many different stakeholders con-
tribute to the resolution with their individual knowledge
of how to find a (partial) solution of (parts of) the prob-
lem. During the process of finding a resolution or par-
tial solutions, stakeholders gather and contribute many
different types of information. For instance, one single
source file that builds a partial solution for the whole
system is built using many different types of contribu-
tions, such as programming expertise, application do-
main knowledge, social skills, and many others. The
final version of the artifact (the source file) eventually
contains many, but not all, of the contributions made.
These contributions, however, are often not used as con-
tributed initially, but in some improved version. Further,
the flow of events and contributions made is not pre-
dictable. Thus, finding a resolution is an opportunistic,
as opposed to systematic, process.

In other words, the process of building software is
reminiscent of the process of building up a wall with
little stones “step-by-step”. It can be seen as knowl-
edge assembly, in contrast to search for solutions. This
view of the problem domain suggests a blackboard-
based approach. The blackboard model is originally
used in opportunistic problem-solving to deal with non-
computable and diverse problems in AI. In this sec-
tion, we introduce our modified blackboard which we
call a distributed concurrent blackboard architecture
(DCBA).

The DCBA is an approach to deal with the variety of
events and context that occur during (informal) meet-
ings [3]. In our architecture, various capture compo-
nents record contextual events (such as people entering
or leaving the meeting room or tracking of electronic
events), track discussions and bboard activity, as well as
audio, video, and whiteboard content. Several special-
ized knowledge sources seize the captured events to cre-
ate new types of information or knowledge, for instance
a hypothesis (for instance argumentation or intermediate
work products; not part of the deliverables) or a solution
(e.g., artifacts that are part of the deliverables). This pro-
cess of knowledge construction creates an abstraction
hierarchy of knowledge that is stored in several layers
of abstraction within the blackboard. Figure 1 displays
the simplified overview of the iBistro system.

The single distributed concurrent blackboard space
is build up from local blackboard installations (e.g.,
“Munich” and “Singapore”). The distributed concurrent
blackboard provides a transparent means for knowledge
sources and users to access one single portal, regardless
of its actual technical implementation.

2

Distributed Concurrent Blackboard Architecture (DCBA)

Meeting Capture
See Section 2.3

LocationService
: MeetingCapture MeetingGenerator

: KnowledgeSource

GetVideo
: MeetingView

Knowledge Retrieval
See Section 2.5

Knowledge Acquisition
See Section 2.4

Knowledge Representation
See Section 2.2Software Architecture

See Section 2.1

Singapore : RDBMSMunich : RDBMS

Munich : Blackboard Singapore : Blackboard

Figure 1: Overview of the iBistro System.

Figure 1 displays five fundamental concepts for
iBistro. In the next sections, the design of iBistro and
the usage of these concepts are detailed as described in
the following overview.

2.1 Software Architecture

The distributed concurrent blackboard serves as a pri-
mary data repository. It is a virtual portal for all users
and components which is made from many intercon-
nected and local blackboards. Each local blackboard,
however, provides transparent access for local tools to
the complete knowledge base. Hence, tools do not need
to know where the data are stored. In Figure 1 for ex-
ample, blackboard systems at Munich and Singapore to-
gether form the global DCBA.

Small data objects are completely replicated over
time, enabling faster access and concurrent access.
Larger data objects, such as video files or other arti-
facts, are not completely replicated but accessed directly
in smaller chunks. This saves blackboard storage space
and transfer time.

The blackboard is concurrent in that several compo-
nents can access the repository at the same time, either
using read or write operations. This also implies that
concurrent users or components likely will create sev-
eral concurrent versions of a data item (see next section
for more information on version control).

 1..n

<<implements>>

<<implements>>

: DCBAConnector

<<extends>>

 * *

 *

 *

: View: DatabaseConnector : History: Capture

: Body : Precondition

: KnowledgeSource

: Strategy

: Control

: DataItem

: ConcreteLayer

: AbstractLayer

: LocalBlackboard

: SQLLayer

Figure 2: The DCB Architecture in Detail.

Figure 2 shows a class diagram representing one sin-

gle iBistro system. The following components relate
to their corresponding principles in iBistro: The black-
board (including the layers and database) serves as a
global data structure for knowledge representation and
storage. Control and strategy components orchestrate
the overall knowledge acquisition process by directing
the knowledge sources (KS). The knowledge sources
achieve the knowledge building process on a certain
level of abstraction. The precondition of a KS im-
plements a rule for the control component to decide
whether to execute the body (the actual code) of the
KS. Capture and view components access the reposi-
tory without being directed by the control and simply
write data items to the repository or read from out to
present the information to the users.

2.2 Knowledge Storage & Representation

The blackboard is a global data structure and serves as
a medium for all communication within the architec-
ture. The blackboard can store any kind of informa-
tion, called data item. However, the information stored
is categorized into several levels of abstraction, which
are stored in certain layers in the blackboard repository.
The blackboard is designed flexible to allow for differ-
ent representation schemes and organization of layers.
For now, we assume that the blackboard contains three
types of data items, represented in three layers accord-
ingly:

Layer n: Solutions and decisions.
Layer n-1: Hypothesis and partial solutions.
Layer 0: Context and raw data.

The data items stored in the blackboard layers are in-
crementally modified and built as the blackboard oper-
ates. Data and knowledge stored in the knowledge space
is recorded accordingly to a taxonomy of data items,
hypothesis, and solutions. The hierarchy used is rep-
resented in the layers of the blackboard model. Basic
types of information (data items) are stored at lower
levels of the blackboard, while higher-level information
(hypothesis, solutions) are stored at higher-levels. Such
partitions are necessary to maintain the organization of
distributed domain knowledge, which is represented in
the collection of knowledge sources. The structure of
the levels is also necessary to control the data on the
blackboard and to organize the levels of hypotheses.

The layers represent the concept of knowledge ac-
quisition: data is transformed to information, which is
transformed to knowledge. The layers also represent the
search for solutions, as explored alternatives, regardless
of their later use in a solution, are considered as an im-
portant contribution and called hypothesis. All possible
hypothesis and solutions that might be derived from a
given set of data items in layer 0 are called the solution
space. For an iBistro meeting, the solution space would
consist of all possible interpretations of a meeting be-
tween a certain set of individuals. However, many of

3

these potential solutions are not found by the system.
Instead of that, the system might identify a subset of the
solution space.

The elements of each layer of the blackboard are com-
posed of elements of the layer below or from the same
layer. For instance, layer 0 might contain a bitmap of a
whiteboard snapshot depicting the topic and agenda of a
meeting. A specific knowledge source, such as an OCR
component, then might be used to interpret the bitmap
and create a machine-readable object, such as a text-
object. The resulting object typically is stored within
the same or one level higher layer than the source object
(bottom-up analysis), or vice-versa (elements at lower
layers are created from higher-level objects, top-down
analysis). In top-down analysis, for instance, a changed
line in the source code could be linked back to the re-
lated position in the source inspection meeting video.

In addition to the organization in layers and in con-
trast to existing blackboard systems, all data items also
may exist in several versions. Similar to version control
in software development, two knowledge sources may
create two concurrent successors of a data item. Each
of them later can be reconsidered or dropped indepen-
dently.

2.3 Information and Meeting Capture

Capture components simply capture a particular type of
contextual information in a meeting or electronic com-
munication, for instance sensor-based data. This infor-
mation is then offered to the system, independent of its
potential use. Specific capture components can be im-
plemented for various types of context, such as people
entering or leaving the meeting room (location-based),
people using specific equipment in the electronic meet-
ing room, such as the electronic whiteboard (activity-
based), or access to project-relevant artifacts, such as
source-code from a workstation, or many others. All
capture components have in common that they track in-
formation that can be electronically recorded. The re-
sulting information is stored as a data item at a low
level of abstraction. The video capture component, for
instance, simply records audio and video of a meeting
and puts the resulting video-stream (as an artifact) to
the knowledge space.

2.4 Knowledge Acquisition

Knowledge sources, pick up basic data items and work
on them, potentially by using and combining the infor-
mation captured by several different meeting capture
components. A knowledge source is responsible for
knowledge acquisition at a certain level of abstraction.
Knowledge sources closely conform to the related con-
cept introduced with generic blackboard architectures.
Most of the rules introduced there do apply in the DCBA
as well: knowledge sources exclusively work with in-
formation stored on the DCBA. They are only able to

communicate with other knowledge sources using the
DCBA. A knowledge source typically works on infor-
mation from a specific layer and rises the information to
the next level higher.

Con
ce

pt
?

: Q
ue

sti
on

Snapshot: Artifact

Snapshot: Artifact

Time

Level of Maturity/
Abstraction Layer

Ver
sio

n/
 H

ist
or

y

[.........]
Level 0

Level 1

Level n

[.........]

Adv
iso

r?
 :

Opt
ion

Cat
alo

g?
 :

Opt
ion

: D
ec

isi
on

: D
ec

isi
on

.2

New Version of
Decision.1,
potentially created
in another meeting.

Figure 3: Knowledge in the DCBA seen as a 3D-model.

In meetings in iBistro, the MINUTEGENERATOR is a
specific knowledge source to work on the diverse infor-
mation created during a informal meeting, including the
recorded video stream, and to create linkage of knowl-
edge with external data items (e.g., knowledge from
other meetings or data items in general). The tool is
used exclusively by a dedicated meeting champion af-
ter the meeting. The MINUTEGENERATOR implicitely
creates indices which are used by the user to navigate
through the knowledge space. Knowledge is linked ac-
cordingly to its logic cohesion and by version. By logic
cohesion we understand that, for instance, a question
rised by one person is logically linked to that originator;
later answers to the question are also interlinked with
the question. Alternate versions of the question, for in-
stance rephrased or more precise versions of the ques-
tions, are linked as a new version to the initial question.
This builds up a complex network of knowledge, depen-
dencies, and versions.

After the post-mortem processs, the hierarchy of in-
formation and knowledge now stored in the meeting
minutes can be translated to a three-dimensional model
as shown in Figure 3. The three axes represent the
timeline (x-axis), level of abstraction (represented in the
blackboard layer, y-axis), and version or knowledge-
interlinkage (z-axis).

2.5 Knowledge Retrieval and Navigation

Knowledge views provide access to the contents and
structure of the knowledge space. Similar to the model-
view-controller paradigm [5], a variety of knowledge
views might provide different visualizations of the state
of a knowledge space. Knowledge views are used in
particular to provide a human-computer-interface (HCI)
to the information and knowledge stored in a knowledge
space.

The meeting minutes stored in the repository repre-
sent the natural flow of the meeting, including external
artifacts, events, or annotations from other sites or an
individual’s personal computer. A self-evident way to
view such a meeting is to playback the meeting as a mul-

4

timedia archive, thus enabling non-participants to access
the raw data. In iBistro, the SMIL MEETINGVIEWER

generates on-demand a SMIL1 [9] file (or data stream)
to represent the meeting along with the captured require-
ments, context, argumentation, and so on. This allows
interested people to navigate through a meeting using
any SMIL compliant video player, such as RealPlayerTM

or Quicktime to view the meeting. As the content of the
meeting follows a common timeline, the ’Clip Position’
slider is used to navigate through the captured audio,
video, as well as other content such as requirements.
Alternatively, the history events can be used to jump to
specific segments of the meeting minutes, for example,
navigating an option will move the position slider to the
frame where the option was first suggested. Graphical
views of requirements or rationale can be displayed us-
ing HTML or by generating bitmaps on demand.

Displaying the multi-dimensional structure of knowl-
edge, such as context-links between stored entries which
allow navigation, is non-trivial. Thus, a specific 3D-
meeting view facilitates the n-dimensional navigation
through the captured knowledge from various sites.

As knowledge in iBistro is stored along with its re-
lated contextual information, navigation is possible us-
ing various types of input. The minutes consist of con-
textual information (e.g., location, identity, activity, his-
tory, and time) which can serve as keys for searching.
For example, a minute may be sorted by requirements
authored by a certain participant, by time, or any other
key. Navigation is possible on any of those keys: the
stakeholder of an issue is found by clicking on that is-
sue. Related information, like time or location where
the meeting took place, is displayed accordingly and
might be used for further navigation. Thus, iBistro’s
database can be used to find stakeholders over various
meetings or even projects. While a MEETINGVIEW pro-
vides a meeting-based index into the knowledge base,
other knowledge sources can provide an artifact-based
view into the knowledge base.

3 Status and Conclusion

The iBistro DCBA has been developed and evaluated
in a distributed setting between the National Univer-
sity of Singapore and TUM. This setup revealed some
technical difficulties and deficiencies, especially regard-
ing “live” audio and video quality due to limited band-
width and camera orientation problems. This shows the
importance of local post-meeting processing and infor-
mation structuring, as communication then is based on
the electronic meeting minutes. The distributed setup
also showed the strengths of iBistro compared to sim-
pler electronic communication (such as email).

The DCBA builds a rich group memory by integrat-
ing artifacts and surrounding information and knowl-

1SMILTM enables simple authoring of multimedia presentations
over the Web. A SMIL presentation can be composed of streaming
audio, streaming video, images, text or any other media type.

edge (rationale, stakeholders, . . .) information into a
common knowledge space. This allows participants to:

� Find stakeholders by looking at related efforts, dis-
cussions, or material.

� Access knowledge by browsing the linked structure
of the knowledge space.

� Find artifacts quickly by issue, stakeholder, topics,
location, or any other node in the knowledge space.

� Understand and learn from the history of the ongo-
ing project or former projects by seeing rationale
entries, which include argumentation, alternatives,
and decisions.

In this paper, we motivated the need to integrate var-
ious sources of information and knowledge, including
informal communication, in GSD. We illustrate how a
group memory is build from various knowledge sources.
We propose to address some of the issues surround-
ing informal communication by supporting the efficient
capture, structure, and navigation of meeting minutes
and their integration into the long term project mem-
ory embedded in tools and documents. We described
the distributed concurrent blackboard architecture as a
connecting technical architecture to achieve these goals.
We finally introduce our experimental environment used
and conclude by presenting our current status.

References

[1] A. Al-Rawas and S. Easterbrook. Communication prob-
lems in requirements engineering: A field study. In Proc.
First Westminster Conf. Professional Awareness in Soft-
ware Engineering, Univ. Westminster, London, 1996.

[2] A. Braun, B. Bruegge, and A. H. Dutoit. Supporting
informal requirements meetings. In 7th International
Workshop on Requirements Engineering: Foundation for
Software Quality. (REFSQ’2001), volume 7, Interlaken,
Switzerland, June 2001.

[3] A. Braun, B. Bruegge, A. H. Dutoit, T. Reicher, and
G. Klinker. Experimentation in context-aware applica-
tions. Submitted to HCI Journal for publication in special
issue on context-aware computing, 2000.

[4] B. Bruegge, A. H. Dutoit, R. Kobylinski, and G. Teub-
ner. Transatlantic project courses in a university environ-
ment. In 7th Asia-Pacific Software Engineering Confer-
ence, Singapore, Dec. 2000. APSEC.

[5] S. Burbeck. Application programming in Smalltalk-80:
How to use Model-View-Controller (MVC), 1987.

[6] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
software design process for large systems. In Communi-
cations of the ACM, volume 31(11), Nov. 1988.

[7] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R.
Reddy. The hearsay-ii speech-understanding system: In-
tegrating knowledge to resolve uncertainty. In ACM Com-
puting Surveys, volume 12 (2), pages 213–253, 1980.

[8] R. Kraut and L. Streeter. Coordination in software devel-
opment. In Communications of the ACM, volume 38(3),
Mar. 1995.

[9] W3C. SMIL. Technical report, World Wide Web Consor-
tium, 1998.

5

