
D-Meeting: an Object-Oriented Framework for Supporting Distributed
Modelling of Software

Naoufel Boulila, Allen H. Dutoit, Bernd Brügge
Technische Universität München, Applied software engineering Chair,

{boulila, dutoit, bruegge}@in.tum.de

Abstract

The distributed development of software is
increasingly common, driven by the globalization of
companies and business and enabled by the
improvements in communication and computing.
The distributed development of software introduce
new aspects of cooperative work in which a greater
emphasis is placed upon technological support of
the software development process. Tools to support
distributed collaboration are at present limited to
general-purpose groupware involving video, audio,
chat, shared whiteboards and shared workspaces.
However, we are not aware of any group support
framework specialized for distributed software
engineering.
In this paper we focus on the development,
evaluation, and refinement of the D-Meeting
framework for supporting synchronous
collaboration among distributed groups of
developers.
A prototype called D-UML groupware supports
distributed software-modelling meetings by
enabling real-time sharing and manipulation of
information, the capture and management of
rationale knowledge, in which different groups
have access to different terminals (e.g., live board,
desktop machine, handheld, interconnected over
fixed or wireless local area networks). D-UML
shows a potential enhancement for supporting
distributed meetings.

Keywords: Framework, Distributed Collaboration,
Global Software Engineering, CSCW, UML, and
Rationale

1 Introduction
Software development performed by traditional co-
located teams is an essentially difficult task. The
complex nature of the activities being carried out
requires strong coordination, collaboration, and
communication among developers through
numerous meetings. Meetings play typically a
critical role in collaboration, as it is much easier to
build consensus and reach compromises in face-to-
face situations. Moreover, large amount of implicit
knowledge is exchanged during negotiation and
conflicts resolution.
In a distributed context, where developers are
dispersed across different sites and even countries,
several problems arise due to the physical, social,
and cultural barriers [1]. Coordination of the

activities is much more difficult, informal
communication among team member cannot
happen, and a lot of knowledge is lost due to
misunderstandings. Consequently, meetings
become difficult, rare, and expensive, as
participants have to schedule these meetings and
travel. Hence, efforts in supporting distributed
development should focus on better supporting
distributed meetings.
Previous efforts to develop distributed groupware
applications that are interoperable across diverse
environments, both research prototypes and
products, have encountered difficulties and
significant cost [2].
This paper is structured as follows. Section 2
describes a general model of the software
engineering meeting activities. Section 3 discusses
the issues and challenges in distributed
collaborative development. Section 4 introduces the
D-Meeting framework. Section 5 describes D-
UML, an instance implementation of the
framework. Section 6 concludes with future
research direction.

2 Meeting activities

Software development activities require strong
team collaboration and cooperation. Much of this
collaboration occurs during meetings, where
designers discuss, argue, negotiate, and reach
decisions via compromise and consensus. These
meetings represent critical points in the project
when knowledge is created, conflicts are identified
and resolved and social networks are formed.
Figure 1 shows the different software development
activities.

Figure 1: Meeting Activities

Brainstorming
Modelling

Consolidation Conflict
Management

Sketches

UML+Sketches
Assessment

Options +Criteria

2.1 Brainstorming

The early stages of modelling require brainstorming
and idea exploration. During this activity, team
members explore a wide range of solutions using
informal drawings and sketches.

2.2 Modelling

Once team members have explored a sufficient
number of ideas, they detail a small number of
promising ones. This is usually done with formal
artiefacts, e.g. UML diagrams. However, the
discussions surrounding the architectural diagrams
are often non-linear and sometimes chaotic. Since
this is a communication-intensive activity,
everyone attempts to talk at the same time. In
distributed settings, floor control is the main issue
that participants will encounter during these tasks.
Moreover, during the modelling activity, team
members discuss several options and suggest
different design views for each option.

2.3 Conflict identification and resolution

During modelling, participants raise several issues
in the form of questions and propose options with
different argumentations. Resolution of these issues
is done after the evaluation of the pro and cons with
respect to criteria. Due to different opinions,
conflicts are often raised and need to be addressed.
Therefore, structuring issues and the different
options and criteria enables team members to
quickly identify the source of the conflict and focus
on new options to address them. Hence using
techniques to capture and maintain rationale can be
used to support this negotiation [3].

2.4 Consolidation

At the end of a meeting or after the meeting, team
members review their decisions, examine open
issues and eventually close them. Finally, this
activity ends up with restructuring and
documenting the meeting for the following
modelling session.

3 Issues in distributed collaborative
development

In distributed settings, supporting the collaboration
of different individuals and teams over distance and
time becomes a increasingly challenging issue.

Many CSCW researchers have investigated the
issues associated with collaborative work. Baecker
[4] provides several requirements for collaborative
writing systems. Nunamaker [5] presents research
in developing and using same-time/ same-place and
same-time/different-place electronic meeting
systems technology; Greenberg [6] describes the
issues and experiences in designing and
implementing group drawing tools, and Olson [7, 8]
presents details of how real groups of expert
designers engage in the early stage of software
design meetings, Damian [9,10] presents initial
studies in investigating groupware support for the
interaction in Requirement Engineering processes.
We address the following issues and challenges in
building the D-Meeting framework:
Informal/formal communication: knowledge is
constructed through group communication and
conversation. Communication is a social activity
and takes different forms, formal and informal.
During brainstorming, a substantial amount of
informal knowledge is produced, while during
consolidation activity, the generated knowledge is
formalized.
Knowledge capture and management:
meetings produce a substantial amount of
discussion, arguments, and rationale knowledge.
The outcome of the meeting, i.e., the knowledge
embedded in conversations, should be reusable,
organized, and shared within the workgroup to
ensure that all participants are working in the same
context. In particular, design rationale and its
concepts, methods, and techniques will be
addressed by the D-Meeting framework.
Awareness: people need to know who else is
present at the meeting to guide their work.
Peripheral awareness (low-level monitoring of
others’ activities) is pivotal factor in collaborative
work [11]. The tradeoffs inherent in awareness
versus privacy and in awareness versus interrupting
others will be addressed.
Inflexible floor control policies: in a meeting,
there are potential problems if several participants
decide to access the same artifact and to manipulate
it at the same time, so different systems adopt
different floor control policies to determine which
participant can take control of an artifact at any
time. Most of applied policies are likely to cause
the frustration of the users and leads to misuse or to
abandon of the system. D-Meeting addresses this
issue by providing several control policies.
Heterogeneity: in distributed environments, it is
rarely the case that all participants share the same
computing environment. A collaborative groupware
must be flexible enough to span a variety of
devices, from small handhelds to live-board
systems.

4 D-Meeting Framework architecture

The key idea behind the D-Meeting framework is
that, all the components building a meeting, i.e.,
Floor Control, Awareness, Design Rationale and
the standard meeting activities, are formally
modelled as software components that could be
used as pluggable strategies (Figure 2).

4.1 D-Meeting framework components

Meeting: is the core engine of the framework, built
as a mediator class that defines an interface for
communicating with the MeetingComponent. Built
as black box component that could be subclassed.
The reuse of D-Meeting however, is done through
composition and delegation more than inheritance.
This class implements a cooperative behavior by
coordinating the elements of a meeting.
 M e e t i n g C o m p o n e n t : represents a generic
component that makes up a meeting. It
communicates with the Meeting object whenever an
event of interest occurs. By subclassing and
overriding its behavior, new components could be
added to the system without changing the behavior
of the Meeting component.
Awareness: is an essential component in the D-
Meeting framework as it is always required to
coordinate group activities. This component
cooperates closely with the Floor Control
component. A default implementation is provided.
Modeling: supports the creation and manipulation
of informal structures such as free-hand
diagramming and textual annotations to
communicate, as well as formal artefacts such as
UML models.
Floor control: Default behaviour is provided which
consist in allowing users to manipulate objects
without any kind of locking relying only on socially
accepted practices to ensure consistency.
Design Rationale: this component addresses an
important issue such as linking the design rationale
to the concrete and visible artifacts through
embedding communication and history in the
design process. This enables developers to
collaboratively build a UML diagram and attach
additional knowledge to the diagram. Techniques
like QOC [12] are intensively used to support
knowledge management activity.

 Figure 2: D-Meeting Architecture

In designing D-Meeting, we considered the
flexibility of extending it with new components or
behaviour without breaking its structure. The
Meeting class localizes behaviour that otherwise
would be distributed among the concrete
MeetingComponent subclasses. This enforces
decoupling of the different components, in that the
Meeting class as well as MeetingComponent class
can vary independently.

4.2 D-Meeting Components
Collaboration

The D-Meeting framework provides default
behaviour that can be used for experimentation
with. Every component subclassing the
M e e t i n g C o m p o n e n t , implements a
RemoteObservable interface and the Meeting class
implements a RemoteObserver interface to support
distributed real-time meetings. Whenever a
component changes state (after a remote user
initiates an action, such as adding an object,
marking it, scribbling etc), it sends a notification to
the Meeting object, which responds by propagating
the effect of change to the concerned
MeetingComponents(Figure 2,3).

Figure 3: Distributed Architecture

A typical scenario deployment is that small group-
work members are physically dispersed in different
places and working around a common task to build
an architectural design.

5 D-UML: an instance of the
D-Meeting framework

D-UML (Distributed UML) is a Java
implementation of the D-Meeting framework,
based on a Distributed MVC pattern (Figure 3). The
Model resides in the Meeting object, and can be
shared across a number of views composing the D-
UML groupware (Figure 4,6):

Figure 4: D-UML Groupware

q UML view: represents a high-level
architecture of a system being modelled
which is composed of use cases, class
diagrams, objects etc…. The users
manipulate the UML view in a similar way
as a CASE tool. However the interaction is
simpler, enabling the use with a touch
screen or a smart board.

q Scribbling view: composed of free-hand
drawing, handwritten annotations,
scribbling and any mean that enables a
communication in a team. The scribbling
view and the UML view are
superimposed, so that developers can use
scribbling to draw attention to specific
parts of the model.

q D-UML is collaboration-aware; several
users can simultaneously interact with the
application and with each other. Each user
that joins a modelling session, his icons is
added to the list of the participants and the
moment he starts an action his icon is
selected with a red square to let the all
participants know who is doing what. It

was a default implementation of the
awareness component.

q Rationale view: where we describe in a
structured way the Questions that are
raised while a brainstorming session, the
different Options that could be envisaged
and the Criteria that influence a decision.
To each artefact being modelled, a related
rationale view is created to track its history
and the knowledge behind its existence
and its relation to other artefacts. D-UML
supports conflict resolution activity
through an assessments matrix that
regroups the different options versus
criteria. Criteria are used to selectively
identify the acceptance or differentiation
of an option. Positive assessment indicates
an option satisfies a criterion. A negative
assessment indicates an option hurts a
criterion (Figure 5).

O/C(examples) Criterion1(platfor
m independent)

Criterion2(fast

execution)
Option1(C++) - +
Option2(Java) + -

Figure 5: Matrix option vs. criteria

q D-UML provides some history features:
replay allows a user that didn’t attend the
meeting or simply joined it late can replay
the session to see what have been done so
far, who did what and who were present.
The replay functionality is simple and
interesting; it shows all the steps the
meeting went through till the current status
of the brainstorming session. Undo/Redo
feature which can be initiated in single as
well as in distributed settings.

Figure 6: D-UML Views

6 Conclusion and future work

In this paper, we described a generic framework
architecture to support synchronous distributed
software development meetings. We described D-
UML as an instance of this framework. D-UML
allows us to investigate the effectiveness and
usability of distributed software modelling activity.
D-UML addresses the following issues:
ÿ D-UML based on a What You See Is What We

Share (WYSIWWS) paradigm in that users
don’t share windows or applications but rather
a model. The advantages are that it provides
potentially a lot of flexibility in view sharing
and respecting privacy, although we visualize
the same view in a given time, scrolling,
zooming and moving the view don’t involve
the rest of the users but rather only the initiator.

ÿ Support for integrated software modeling
(UML), rationale capture and management
through communication and history
embedding.

ÿ Support of replay sessions, where a user, who
was not present, can replay the meeting history,
as well as Undo/Redo functionalities.

ÿ Support for distributed collaboration over
formal and informal artifacts

D-UML has been refined in the context of a small
group of researchers. For further usability
evaluation, D-UML will be used in an experiment
with two sets of groups, one group who uses D-
UML and the other who does not, both trying to
accomplish the same task to collaborate over a
system model from different locations.
In the near future we plan to support the following
features:
ß Adding an interaction component that enables

the use of Augmented Reality technology by
augmenting desks with virtual UML objects
and video streams to experience the
collaboration in another way and to evaluate its
usability.

ß Automate event trace for automated post-
mortem structuring of design rationale capture.

7 Referencess

[1] R.E. Grinter, J.D. Herbsleb, & D.E. Perry. “The
Geography of Coordination: Dealing with Distance in
R&D Work”. ACM. 1999.

[2] I.Marsic. Data-centric collaboration in heterogeneous
environments. Submitted for publication.

[3] A.H. Dutoit, B. Paech, “Rationale management in
Software Engineering”, In S.K. Chang (ed.) Handbook of
Software and Knowledge Engineering, World Scientific
Publishing, 2002

 [4] R. M. Baecker, Readings in Groupware and
Computer Supported Co-operative Work, Assisting
Human-Human Collaboration, Morgan Kaufmann
Publishers, 1993

[5] J. F. Nunmaker et al., “Electronics Meetings Systems
to Support Group Work”, Communication of the ACM,
34, 7, 1991.

[6] S. Greenberg et al., “Issues and Experiences
Designing and Implementing Two Group Drawing
Tools”, in Proc. Of the 25th Annual Hawaii International
Conference on The System Science, pp. 139-250, Jan
1992

[7] G. M. Olson et al, “Small Group Design Meeting: An
Analysis of Collaboration”, Human-Computer
Interaction, 7, 347-374, 1992

[8] G. M. Olson et al, “Designing Software For A
Group’s Needs: A Functional Analysis of Synchronous
Groupware”, in User Interface Software, Edited by Bass
and Dewan, John Wiley & Sons Ltd, 1993

[9] Herlea, D. (1997). A groupware system for
negotiating software requirements. M.Sc. thesis, Dept of
Computer Science, University of Calgary, Alberta,
Canada.

[10] D. Damian. An empirical study of requirements
engineering in distributed software projects: Is distance
negotiation more effective? In Asian Pacific Software
Engineering Conference, Dec. 2001.

[11] Dourish, Paul, and Bellotti, Victoria. "Awareness
and Coordination in Shared Work Spaces." Proceedings
of ACM Conference on Computer-Supported
Cooperative Work, Toronto, Canada, November 1992

[12] A. MacLean, R.M. Young, V.M.E. Bellotti, and T.P.
Moran. Questions, options, and criteria: elements of
design space analysis. CHI’91.

